JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs
- URL: http://arxiv.org/abs/2412.15623v1
- Date: Fri, 20 Dec 2024 07:29:10 GMT
- Title: JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs
- Authors: Hongyi Li, Jiawei Ye, Jie Wu, Tianjie Yan, Chu Wang, Zhixin Li,
- Abstract summary: We present JailPO, a novel black-box jailbreak framework to examine Large Language Models (LLMs) alignment.
For scalability and universality, JailPO meticulously trains attack models to automatically generate covert jailbreak prompts.
We also introduce a preference optimization-based attack method to enhance the jailbreak effectiveness.
- Score: 11.924542310342282
- License:
- Abstract: Large Language Models (LLMs) aligned with human feedback have recently garnered significant attention. However, it remains vulnerable to jailbreak attacks, where adversaries manipulate prompts to induce harmful outputs. Exploring jailbreak attacks enables us to investigate the vulnerabilities of LLMs and further guides us in enhancing their security. Unfortunately, existing techniques mainly rely on handcrafted templates or generated-based optimization, posing challenges in scalability, efficiency and universality. To address these issues, we present JailPO, a novel black-box jailbreak framework to examine LLM alignment. For scalability and universality, JailPO meticulously trains attack models to automatically generate covert jailbreak prompts. Furthermore, we introduce a preference optimization-based attack method to enhance the jailbreak effectiveness, thereby improving efficiency. To analyze model vulnerabilities, we provide three flexible jailbreak patterns. Extensive experiments demonstrate that JailPO not only automates the attack process while maintaining effectiveness but also exhibits superior performance in efficiency, universality, and robustness against defenses compared to baselines. Additionally, our analysis of the three JailPO patterns reveals that attacks based on complex templates exhibit higher attack strength, whereas covert question transformations elicit riskier responses and are more likely to bypass defense mechanisms.
Related papers
- xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, MLLMs remain vulnerable to jailbreak attacks.
We propose Immune, an inference-time defense framework that leverages a safe reward model to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
We propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods.
Our method is designed based on three key observations from existing jailbreaking studies and practices.
arXiv Detail & Related papers (2024-10-31T01:55:33Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.
We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.
Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner [21.414701448926614]
This paper introduces a generic LLM jailbreak defense framework called SelfDefend.
We empirically validate using mainstream GPT-3.5/4 models against major jailbreak attacks.
To further improve the defense's robustness and minimize costs, we employ a data distillation approach to tune dedicated open-source defense models.
arXiv Detail & Related papers (2024-06-08T15:45:31Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
We propose a novel black-box jailbreak framework for automated red teaming of Large language models.
We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs.
arXiv Detail & Related papers (2024-03-13T11:16:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.