論文の概要: Significance of Chain of Thought in Gender Bias Mitigation for English-Dravidian Machine Translation
- arxiv url: http://arxiv.org/abs/2405.19701v1
- Date: Thu, 30 May 2024 05:26:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 18:06:52.639116
- Title: Significance of Chain of Thought in Gender Bias Mitigation for English-Dravidian Machine Translation
- Title(参考訳): 英語・ドラビディア語機械翻訳におけるジェンダーバイアス緩和における思考の連鎖の意義
- Authors: Lavanya Prahallad, Radhika Mamidi,
- Abstract要約: 本稿では,Dravidian 族に属する Telugu や Kannada などの言語を対象とした機械翻訳システムにおける性別バイアスについて検討する。
複数の形式がバイアスを低減できるのに対して、個人中心の文は歴史的ステレオタイプによってバイアスを維持できる。
- 参考スコア(独自算出の注目度): 6.200058263544999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gender bias in machine translation (MT) systems poses a significant challenge to achieving accurate and inclusive translations. This paper examines gender bias in machine translation systems for languages such as Telugu and Kannada from the Dravidian family, analyzing how gender inflections affect translation accuracy and neutrality using Google Translate and ChatGPT. It finds that while plural forms can reduce bias, individual-centric sentences often maintain the bias due to historical stereotypes. The study evaluates the Chain of Thought processing, noting significant bias mitigation from 80% to 4% in Telugu and from 40% to 0% in Kannada. It also compares Telugu and Kannada translations, emphasizing the need for language specific strategies to address these challenges and suggesting directions for future research to enhance fairness in both data preparation and prompts during inference.
- Abstract(参考訳): 機械翻訳(MT)システムにおけるジェンダーバイアスは、正確かつ包括的な翻訳を達成する上で重要な課題である。
本稿では,Dravidian family の Telugu や Kannada などの機械翻訳システムにおけるジェンダーバイアスについて検討し,Google Translate と ChatGPT を用いて,ジェンダーインフレクションが翻訳精度と中立性に与える影響を解析した。
複数の形式がバイアスを低減できるのに対して、個人中心の文は歴史的ステレオタイプによってバイアスを維持できる。
この研究は思考処理の連鎖を評価し、テルグ語では80%から4%、カナダ語では40%から0%に顕著なバイアス緩和が見られた。
また、TeluguとKannadaの翻訳を比較し、これらの課題に対処するための言語固有の戦略の必要性を強調し、データ準備と推論中のプロンプトの公平性を高めるための今後の研究の方向性を提案する。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Investigating Markers and Drivers of Gender Bias in Machine Translations [0.0]
大型言語モデル(LLM)におけるインプシット性バイアスは、文書化された問題である。
我々は、DeepL翻訳APIを使用して、56のソフトウェアエンジニアリングタスクを繰り返し翻訳する際に生じるバイアスを調査する。
いくつかの言語は、類似した代名詞の使用パターンを示し、3つの緩いグループに分類する。
文中に出現する主動詞は,翻訳における意味のあるジェンダーの要因である可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-18T15:54:46Z) - GATE X-E : A Challenge Set for Gender-Fair Translations from
Weakly-Gendered Languages [0.0]
我々は、トルコ語、ハンガリー語、フィンランド語、ペルシア語から英語への翻訳からなるGATEコーパスの拡張であるGATE X-Eを紹介する。
このデータセットは、幅広い文の長さと領域を持つ自然文を特徴とし、様々な言語現象に関する翻訳書き直しに挑戦する。
GPT-4で構築した翻訳性書換えソリューションをGATE X-Eを用いて評価する。
論文 参考訳(メタデータ) (2024-02-22T04:36:14Z) - Gender Bias in Machine Translation and The Era of Large Language Models [0.8702432681310399]
この章では、性バイアスの持続化における機械翻訳の役割について検討し、言語横断的な設定と統計的依存関係によって生じる課題を強調している。
従来のニューラルマシン翻訳手法と、機械翻訳システムとして使用される生成事前学習トランスフォーマモデルの両方において、ジェンダーバイアスに関連する既存の作業の概要を概観する。
論文 参考訳(メタデータ) (2024-01-18T14:34:49Z) - Evaluating Gender Bias in the Translation of Gender-Neutral Languages
into English [0.0]
我々は、トルコ語、ハンガリー語、フィンランド語、ペルシア語から英語への翻訳からなるGATEコーパスの拡張であるGATE X-Eを紹介する。
このデータセットは、幅広い文の長さと領域を持つ自然文を特徴とし、様々な言語現象に関する翻訳書き直しに挑戦する。
GPT-3.5 Turbo上に構築された英語のジェンダー書き換えソリューションをGATE X-Eを用いて評価する。
論文 参考訳(メタデータ) (2023-11-15T10:25:14Z) - A Tale of Pronouns: Interpretability Informs Gender Bias Mitigation for
Fairer Instruction-Tuned Machine Translation [35.44115368160656]
機械翻訳モデルがジェンダーバイアスを示すか否かについて検討する。
We found that IFT model default to male-inflected translations, evengarding female occupational stereotypes。
実装が容易で効果的なバイアス緩和ソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-18T17:36:55Z) - The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender
Characterisation in 55 Languages [51.2321117760104]
本稿では,55言語を対象とした大規模データセットにおけるジェンダー表現を特徴付ける自動パイプラインであるGender-GAP Pipelineについて述べる。
このパイプラインは、性別付き人称名詞の多言語語彙を用いて、テキスト中の性別表現を定量化する。
本稿では、WMTのトレーニングデータとNewsタスクの開発データにジェンダー表現を報告し、現在のデータが男性表現にスキューされていることを確認する。
論文 参考訳(メタデータ) (2023-08-31T17:20:50Z) - Counter-GAP: Counterfactual Bias Evaluation through Gendered Ambiguous
Pronouns [53.62845317039185]
バイアス測定データセットは、言語モデルのバイアスされた振る舞いを検出する上で重要な役割を果たす。
本稿では, 多様な, 自然な, 最小限のテキストペアを, 対物生成によって収集する新しい手法を提案する。
事前学習された4つの言語モデルは、各グループ内よりも、異なる性別グループ間でかなり不整合であることを示す。
論文 参考訳(メタデータ) (2023-02-11T12:11:03Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
言語カバレッジバイアスは、ニューラルネットワーク翻訳(NMT)において重要である。
実験を慎重に設計することにより、トレーニングデータにおける言語カバレッジバイアスの包括的分析を行う。
本稿では,言語カバレッジバイアス問題を軽減するための,シンプルで効果的な2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-07T01:55:34Z) - Decoding and Diversity in Machine Translation [90.33636694717954]
NMTが楽しむBLEUスコアに対して支払う費用の多様性の違いを特徴付ける。
本研究は,ジェンダー代名詞を翻訳する際に,検索が既知バイアスの正解源となることを示唆する。
論文 参考訳(メタデータ) (2020-11-26T21:09:38Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。