Improving SMOTE via Fusing Conditional VAE for Data-adaptive Noise Filtering
- URL: http://arxiv.org/abs/2405.19757v3
- Date: Mon, 26 Aug 2024 05:54:22 GMT
- Title: Improving SMOTE via Fusing Conditional VAE for Data-adaptive Noise Filtering
- Authors: Sungchul Hong, Seunghwan An, Jong-June Jeon,
- Abstract summary: We introduce a framework to enhance the SMOTE algorithm using Variational Autoencoders (VAE)
Our approach systematically quantifies the density of data points in a low-dimensional latent space using the VAE, simultaneously incorporating information on class labels and classification difficulty.
Empirical studies on several imbalanced datasets represent that this simple process innovatively improves the conventional SMOTE algorithm over the deep learning models.
- Score: 0.5735035463793009
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in a generative neural network model extend the development of data augmentation methods. However, the augmentation methods based on the modern generative models fail to achieve notable performance for class imbalance data compared to the conventional model, Synthetic Minority Oversampling Technique (SMOTE). We investigate the problem of the generative model for imbalanced classification and introduce a framework to enhance the SMOTE algorithm using Variational Autoencoders (VAE). Our approach systematically quantifies the density of data points in a low-dimensional latent space using the VAE, simultaneously incorporating information on class labels and classification difficulty. Then, the data points potentially degrading the augmentation are systematically excluded, and the neighboring observations are directly augmented on the data space. Empirical studies on several imbalanced datasets represent that this simple process innovatively improves the conventional SMOTE algorithm over the deep learning models. Consequently, we conclude that the selection of minority data and the interpolation in the data space are beneficial for imbalanced classification problems with a relatively small number of data points.
Related papers
- Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches [35.431340001608476]
This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning.
It aims to tackle the challenges posed by small-sample data in fields such as drug discovery, target recognition, and malicious traffic detection.
Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning.
arXiv Detail & Related papers (2024-11-25T16:51:11Z) - Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
Conditional Latent space Variational Autoencoder (CL-VAE) improved pre-processing for anomaly detection on data with known inlier classes and unknown outlier classes.
Model shows increased accuracy in anomaly detection, achieving an AUC of 97.4% on the MNIST dataset.
In addition, the CL-VAE shows increased benefits from ensembling, a more interpretable latent space, and an increased ability to learn patterns in complex data with limited model sizes.
arXiv Detail & Related papers (2024-10-16T07:48:53Z) - Systematic Evaluation of Synthetic Data Augmentation for Multi-class NetFlow Traffic [2.5182419298876857]
Multi-class classification models can identify specific types of attacks, allowing for more targeted and effective incident responses.
Recent advances suggest that generative models can assist in data augmentation, claiming to offer superior solutions for imbalanced datasets.
Our experiments indicate that resampling methods for balancing training data do not reliably improve classification performance.
arXiv Detail & Related papers (2024-08-28T12:44:07Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Synthetic Information towards Maximum Posterior Ratio for deep learning
on Imbalanced Data [1.7495515703051119]
We propose a technique for data balancing by generating synthetic data for the minority class.
Our method prioritizes balancing the informative regions by identifying high entropy samples.
Our experimental results on forty-one datasets demonstrate the superior performance of our technique.
arXiv Detail & Related papers (2024-01-05T01:08:26Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Generalized Oversampling for Learning from Imbalanced datasets and
Associated Theory [0.0]
In supervised learning, it is quite frequent to be confronted with real imbalanced datasets.
We propose a data augmentation procedure, the GOLIATH algorithm, based on kernel density estimates.
We evaluate the performance of the GOLIATH algorithm in imbalanced regression situations.
arXiv Detail & Related papers (2023-08-05T23:08:08Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Convex space learning improves deep-generative oversampling for tabular
imbalanced classification on smaller datasets [0.0]
We show that existing deep generative models perform poorly compared to linear approaches generating synthetic samples from the convex space of the minority class.
We propose a deep generative model, ConvGeN combining the idea of convex space learning and deep generative models.
arXiv Detail & Related papers (2022-06-20T14:42:06Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Data Augmentation Imbalance For Imbalanced Attribute Classification [60.71438625139922]
We propose a new re-sampling algorithm called: data augmentation imbalance (DAI) to explicitly enhance the ability to discriminate the fewer attributes.
Our DAI algorithm achieves state-of-the-art results, based on pedestrian attribute datasets.
arXiv Detail & Related papers (2020-04-19T20:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.