Generalized Oversampling for Learning from Imbalanced datasets and
Associated Theory
- URL: http://arxiv.org/abs/2308.02966v1
- Date: Sat, 5 Aug 2023 23:08:08 GMT
- Title: Generalized Oversampling for Learning from Imbalanced datasets and
Associated Theory
- Authors: Samuel Stocksieker and Denys Pommeret and Arthur Charpentier
- Abstract summary: In supervised learning, it is quite frequent to be confronted with real imbalanced datasets.
We propose a data augmentation procedure, the GOLIATH algorithm, based on kernel density estimates.
We evaluate the performance of the GOLIATH algorithm in imbalanced regression situations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In supervised learning, it is quite frequent to be confronted with real
imbalanced datasets. This situation leads to a learning difficulty for standard
algorithms. Research and solutions in imbalanced learning have mainly focused
on classification tasks. Despite its importance, very few solutions exist for
imbalanced regression. In this paper, we propose a data augmentation procedure,
the GOLIATH algorithm, based on kernel density estimates which can be used in
classification and regression. This general approach encompasses two large
families of synthetic oversampling: those based on perturbations, such as
Gaussian Noise, and those based on interpolations, such as SMOTE. It also
provides an explicit form of these machine learning algorithms and an
expression of their conditional densities, in particular for SMOTE. New
synthetic data generators are deduced. We apply GOLIATH in imbalanced
regression combining such generator procedures with a wild-bootstrap resampling
technique for the target values. We evaluate the performance of the GOLIATH
algorithm in imbalanced regression situations. We empirically evaluate and
compare our approach and demonstrate significant improvement over existing
state-of-the-art techniques.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Improving SMOTE via Fusing Conditional VAE for Data-adaptive Noise Filtering [0.5735035463793009]
We introduce a framework to enhance the SMOTE algorithm using Variational Autoencoders (VAE)
Our approach systematically quantifies the density of data points in a low-dimensional latent space using the VAE, simultaneously incorporating information on class labels and classification difficulty.
Empirical studies on several imbalanced datasets represent that this simple process innovatively improves the conventional SMOTE algorithm over the deep learning models.
arXiv Detail & Related papers (2024-05-30T07:06:02Z) - Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems [2.375943263571389]
In inverse problems, the incorporation of a sparsity prior yields a regularization effect on the solution.
We propose a probabilistic sparsity prior formulated as a mixture of Gaussians, capable of modeling sparsity with respect to a generic basis.
We put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network.
arXiv Detail & Related papers (2024-01-29T22:52:57Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - A Novel Hybrid Sampling Framework for Imbalanced Learning [0.0]
"SMOTE-RUS-NC" has been compared with other state-of-the-art sampling techniques.
Rigorous experimentation has been conducted on 26 imbalanced datasets.
arXiv Detail & Related papers (2022-08-20T07:04:00Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Handling Imbalanced Data: A Case Study for Binary Class Problems [0.0]
The major issues in terms of solving for classification problems are the issues of Imbalanced data.
This paper focuses on both synthetic oversampling techniques and manually computes synthetic data points to enhance easy comprehension of the algorithms.
We analyze the application of these synthetic oversampling techniques on binary classification problems with different Imbalanced ratios and sample sizes.
arXiv Detail & Related papers (2020-10-09T02:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.