論文の概要: AI Safety: A Climb To Armageddon?
- arxiv url: http://arxiv.org/abs/2405.19832v2
- Date: Sun, 2 Jun 2024 22:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 13:40:18.750750
- Title: AI Safety: A Climb To Armageddon?
- Title(参考訳): AIの安全性:アーマゲドンへの夢?
- Authors: Herman Cappelen, Josh Dever, John Hawthorne,
- Abstract要約: 本稿では,最適化,緩和,ホロリズムの3つの対応戦略について検討する。
この議論の驚くべき堅牢性は、AIの安全性に関するコア前提の再検討を迫られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an argument that certain AI safety measures, rather than mitigating existential risk, may instead exacerbate it. Under certain key assumptions - the inevitability of AI failure, the expected correlation between an AI system's power at the point of failure and the severity of the resulting harm, and the tendency of safety measures to enable AI systems to become more powerful before failing - safety efforts have negative expected utility. The paper examines three response strategies: Optimism, Mitigation, and Holism. Each faces challenges stemming from intrinsic features of the AI safety landscape that we term Bottlenecking, the Perfection Barrier, and Equilibrium Fluctuation. The surprising robustness of the argument forces a re-examination of core assumptions around AI safety and points to several avenues for further research.
- Abstract(参考訳): 本稿では,既存のリスクを軽減するのではなく,AIの安全性対策によってさらに悪化する可能性について論じる。
AIの失敗の必然性、障害の時点におけるAIシステムのパワーと結果の害の重大さとの期待された相関、失敗前にAIシステムがより強力になるための安全対策の傾向など、いくつかの重要な前提の下では、安全性の取り組みには、負の期待された実用性がある。
本稿では,最適化,緩和,ホロリズムの3つの対応戦略について検討する。
それぞれの課題は、私たちがBottlenecking、Perfection Barrier、Equilibrium Fluctuationと呼んでいる、AIの安全性ランドスケープの本質的な特徴に起因しています。
この議論の驚くべき堅牢性は、AIの安全性に関するコア前提の再検討を迫られ、さらなる研究のためのいくつかの道のりを指し示している。
関連論文リスト
- Human-AI Safety: A Descendant of Generative AI and Control Systems Safety [6.100304850888953]
先進的なAI技術に対する有意義な安全性保証には、AI出力と人間の振る舞いによって形成されるフィードバックループが、どのようにして異なる結果に向かって相互作用を駆動するかについての推論が必要である、と我々は主張する。
我々は、次世代の人間中心AI安全性に向けた具体的な技術ロードマップを提案する。
論文 参考訳(メタデータ) (2024-05-16T03:52:00Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Absolutist AI [0.0]
絶対的な制約でAIシステムを訓練することは、多くのAI安全問題にかなりの進歩をもたらす可能性がある。
ミスアライメントの最悪の結果を避けるためのガードレールを提供する。
非常に価値のある結果を得るために、AIが大惨事を引き起こすのを防げるかもしれない。
論文 参考訳(メタデータ) (2023-07-19T03:40:37Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - X-Risk Analysis for AI Research [24.78742908726579]
我々は、AI x-riskの分析方法のガイドを提供する。
まず、今日のシステムの安全性についてレビューする。
次に,今後のシステムの安全性に長期的影響を与える戦略について議論する。
論文 参考訳(メタデータ) (2022-06-13T00:22:50Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Understanding and Avoiding AI Failures: A Practical Guide [0.6526824510982799]
AIアプリケーションに関連するリスクを理解するためのフレームワークを作成します。
また、AIの安全性原則を使用して、AIにおけるインテリジェンスと人間のような品質のユニークなリスクを定量化しています。
論文 参考訳(メタデータ) (2021-04-22T17:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。