論文の概要: The Merit of River Network Topology for Neural Flood Forecasting
- arxiv url: http://arxiv.org/abs/2405.19836v1
- Date: Thu, 30 May 2024 08:45:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 15:18:46.707725
- Title: The Merit of River Network Topology for Neural Flood Forecasting
- Title(参考訳): ニューラルフラッド予測のための河川ネットワークトポロジのメリット
- Authors: Nikolas Kirschstein, Yixuan Sun,
- Abstract要約: 気候変動は河川の洪水を悪化させ、その頻度と強度はかつてないほど高くなる。
予測システムは通常、正確な川の排出予測に依存している。
河川ネットワークの既知のトポロジを予測モデルに組み込むことで,ゲージ間の隣接関係を活用できる可能性がある。
- 参考スコア(独自算出の注目度): 3.731618046702812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change exacerbates riverine floods, which occur with higher frequency and intensity than ever. The much-needed forecasting systems typically rely on accurate river discharge predictions. To this end, the SOTA data-driven approaches treat forecasting at spatially distributed gauge stations as isolated problems, even within the same river network. However, incorporating the known topology of the river network into the prediction model has the potential to leverage the adjacency relationship between gauges. Thus, we model river discharge for a network of gauging stations with GNNs and compare the forecasting performance achieved by different adjacency definitions. Our results show that the model fails to benefit from the river network topology information, both on the entire network and small subgraphs. The learned edge weights correlate with neither of the static definitions and exhibit no regular pattern. Furthermore, the GNNs struggle to predict sudden, narrow discharge spikes. Our work hints at a more general underlying phenomenon of neural prediction not always benefitting from graphical structure and may inspire a systematic study of the conditions under which this happens.
- Abstract(参考訳): 気候変動は河川の洪水を悪化させ、その頻度と強度はかつてないほど高くなる。
待ち望まれている予測システムは、通常正確な川の排出予測に依存している。
この目的のために、SOTAデータ駆動型アプローチは、同じ河川ネットワーク内であっても、空間分布のゲージステーションでの予測を独立した問題として扱う。
しかし,河川ネットワークの既知のトポロジを予測モデルに組み込むことで,ゲージ間の隣接関係を活用できる可能性がある。
そこで本稿では,GNNを用いたガーグステーション網の河川流出をモデル化し,その予測性能を異なる隣接条件で比較する。
以上の結果から, 河川網のトポロジ情報から, 河川網全体と小部分グラフの双方において, モデルが便益を得られないことが示唆された。
学習したエッジウェイトは静的定義のどちらとも相関せず、通常のパターンも示さない。
さらに、GNNは突然の、狭い放電のスパイクを予測するのに苦労している。
我々の研究は、必ずしもグラフィカルな構造から恩恵を受けるとは限らない、より一般的な神経予測の現象を示唆し、それが起こる条件について体系的な研究を誘発する可能性がある。
関連論文リスト
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
水量の水量予測は、水管理、洪水予測、洪水制御など様々な用途に有用である。
本稿では,GCRN(Graph Convolution Recurrent Neural Network)エンコーダデコーダの隠れ状態を増大させる時間予測モデルを提案する。
本稿では,河川,河川,湖上のカナダステーションのネットワークから,新たな水流のベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-12-10T18:23:40Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Convolutional GRU Network for Seasonal Prediction of the El
Ni\~no-Southern Oscillation [24.35408676030181]
本稿では,エルニーニョ南部振動(ENSO)領域時間列予測問題に対して,畳み込みGated Recurrent Unit (ConvGRU) を改良したネットワークを提案する。
提案するConvGRUネットワークはエンコーダ・デコーダシーケンス・ツー・シーケンス構造を持ち,太平洋地域の歴史的SSTマップを入力として取り込んで,その後数ヶ月間,ENSO領域内で将来のSSTマップを生成する。
その結果, ConvGRU ネットワークは LIM, AF, RNN と比較して Nino 3.4 インデックスの予測可能性を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-06-18T00:15:45Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
リアルタイムデータに基づく高速更新は、プレドリルモデルで高い不確実性を持つ複雑な貯水池での掘削に不可欠である。
本稿では, フラビアル継承の地質学的に一貫した2次元断面を再現するためのGAN(generative adversarial Deep Neural Network)を提案する。
この手法は不確実性を低減し, 掘削ビットより500m先にある主要な地質特性を正確に予測する。
論文 参考訳(メタデータ) (2022-07-04T12:52:38Z) - Towards the Explanation of Graph Neural Networks in Digital Pathology
with Information Flows [67.23405590815602]
グラフニューラルネットワーク(GNN)は、デジタル病理学において広く採用されている。
既存の説明者は、予測に関連する説明的部分グラフを発見する。
説明文は、予測に必要であるだけでなく、最も予測可能な領域を明らかにするのに十分である。
本稿では, IFEXPLAINERを提案する。
論文 参考訳(メタデータ) (2021-12-18T10:19:01Z) - Short-term Hourly Streamflow Prediction with Graph Convolutional GRU
Networks [0.0]
資産被害と死者の点で、その影響を準備し緩和するためには、流水、その結果の洪水を予測することが不可欠である。
本稿では,上流河川網を用いたセンサ位置における36時間の流速予測のためのグラフ畳み込みGRUモデルを提案する。
論文 参考訳(メタデータ) (2021-07-07T20:26:39Z) - HydroNets: Leveraging River Structure for Hydrologic Modeling [0.0]
HydroNetsは、特定の降雨流出信号と上流ネットワークダイナミクスの両方を活用するために設計されたディープニューラルネットワークモデルである。
川構造の事前知識の注入は、サンプルの複雑さを減らし、スケーラブルでより正確な水理モデリングを可能にする。
インドにおける2つの大きな盆地に関する実証的研究を行い、提案モデルとその利点を確実に支持する。
論文 参考訳(メタデータ) (2020-07-01T16:32:07Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。