論文の概要: Learning Discriminative Dynamics with Label Corruption for Noisy Label Detection
- arxiv url: http://arxiv.org/abs/2405.19902v1
- Date: Thu, 30 May 2024 10:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:59:14.897015
- Title: Learning Discriminative Dynamics with Label Corruption for Noisy Label Detection
- Title(参考訳): 雑音ラベル検出のためのラベル破壊による識別ダイナミクスの学習
- Authors: Suyeon Kim, Dongha Lee, SeongKu Kang, Sukang Chae, Sanghwan Jang, Hwanjo Yu,
- Abstract要約: トレーニング信号のダイナミクスに基づいて,誤ラベル付きインスタンスと正しくラベル付けされたインスタンスを識別するDynaCorフレームワークを提案する。
我々の総合的な実験により、DynaCorは最先端のライバルより優れており、様々なノイズタイプやノイズレートに対して強い堅牢性を示している。
- 参考スコア(独自算出の注目度): 25.55455239006278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Label noise, commonly found in real-world datasets, has a detrimental impact on a model's generalization. To effectively detect incorrectly labeled instances, previous works have mostly relied on distinguishable training signals, such as training loss, as indicators to differentiate between clean and noisy labels. However, they have limitations in that the training signals incompletely reveal the model's behavior and are not effectively generalized to various noise types, resulting in limited detection accuracy. In this paper, we propose DynaCor framework that distinguishes incorrectly labeled instances from correctly labeled ones based on the dynamics of the training signals. To cope with the absence of supervision for clean and noisy labels, DynaCor first introduces a label corruption strategy that augments the original dataset with intentionally corrupted labels, enabling indirect simulation of the model's behavior on noisy labels. Then, DynaCor learns to identify clean and noisy instances by inducing two clearly distinguishable clusters from the latent representations of training dynamics. Our comprehensive experiments show that DynaCor outperforms the state-of-the-art competitors and shows strong robustness to various noise types and noise rates.
- Abstract(参考訳): 実世界のデータセットで一般的に見られるラベルノイズは、モデルの一般化に有害な影響を与える。
誤ったラベル付きインスタンスを効果的に検出するために、以前の研究は、クリーンなラベルとノイズの多いラベルを区別する指標として、トレーニング損失などの区別可能なトレーニング信号に大きく依存していた。
しかし、トレーニング信号がモデルの振舞いを不完全に明らかにし、様々なノイズタイプに効果的に一般化されないため、検出精度が制限されるという制限がある。
本稿では,トレーニング信号のダイナミクスに基づいて,不正ラベル付きインスタンスと正しくラベル付けされたインスタンスを区別するDynaCorフレームワークを提案する。
クリーンでノイズの多いラベルに対する監督の欠如に対処するため、DynaCorは最初に、オリジナルのデータセットを意図的に破損したラベルで強化するラベル破損戦略を導入し、ノイズの多いラベルに対するモデルの振る舞いを間接的にシミュレーションできるようにする。
そしてDynaCorは、トレーニングダイナミクスの潜在表現から2つの明確に区別可能なクラスタを誘導することで、クリーンでノイズの多いインスタンスを特定することを学ぶ。
我々の総合的な実験により、DynaCorは最先端のライバルより優れており、様々なノイズタイプやノイズレートに対して強い堅牢性を示している。
関連論文リスト
- Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
本稿では,トレーニング中にノイズラベル付きおよび未処理データを受け入れる条件付き画像生成フレームワークを提案する。
本稿では,ラベルのないデータに新たなラベルを割り当てながら,逆行訓練にインスタンスワイドを割り当てるソフトカリキュラム学習を提案する。
実験により,本手法は,定量および定性性能の両面において,既存の半教師付き・ラベル付きロバストな手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-17T08:31:59Z) - Label Noise-Robust Learning using a Confidence-Based Sieving Strategy [15.997774467236352]
ラベルノイズを伴うタスクの学習では、オーバーフィッティングに対するモデルの堅牢性を改善することが重要な課題である。
サンプルをノイズのあるラベルで識別し、モデルを学習するのを防ぐことは、この課題に対処するための有望なアプローチである。
本研究では, 信頼度誤差と呼ばれる新しい判別基準と, クリーンサンプルとノイズサンプルを効果的に識別するためのCONFESと呼ばれるシービング戦略を提案する。
論文 参考訳(メタデータ) (2022-10-11T10:47:28Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
ノイズの多いラベルでディープニューラルネットワーク(DNN)を訓練することは事実上難しい。
従来の取り組みでは、統合されたデノナイジングフローで部分データや完全なデータを扱う傾向があります。
本研究では,ノイズの多いデータを分割・分散的に処理するために,CREMAと呼ばれる粗大な頑健な学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-23T02:06:38Z) - Towards Harnessing Feature Embedding for Robust Learning with Noisy
Labels [44.133307197696446]
ディープニューラルネットワーク(DNN)の記憶効果は,近年のラベルノイズ学習法において重要な役割を担っている。
ラベルノイズを用いたディープラーニングのための新しい特徴埋め込み方式, LabEl Noise Dilution (LEND) を提案する。
論文 参考訳(メタデータ) (2022-06-27T02:45:09Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - Label Noise in Adversarial Training: A Novel Perspective to Study Robust
Overfitting [45.58217741522973]
逆行訓練においてラベルノイズが存在することを示す。
このようなラベルノイズは、正反対例の真のラベル分布とクリーン例から受け継いだラベルとのミスマッチに起因する。
本稿では,ラベルノイズと頑健なオーバーフィッティングに対処するため,ラベルの自動校正手法を提案する。
論文 参考訳(メタデータ) (2021-10-07T01:15:06Z) - Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis [69.48582264712854]
本研究では,頑健な視覚的感情分析を行うための頑健な学習手法を提案する。
本手法は,トレーニング中にノイズラベルを集約・フィルタリングするために外部メモリに依存している。
公開データセットを用いたラベルノイズを用いた視覚的感情分析のベンチマークを構築した。
論文 参考訳(メタデータ) (2021-09-15T18:18:28Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - Learning Not to Learn in the Presence of Noisy Labels [104.7655376309784]
ギャンブラーの損失と呼ばれる新しい種類の損失関数は、様々なレベルの汚職にまたがってノイズをラベル付けするのに強い堅牢性をもたらすことを示す。
この損失関数によるトレーニングは、ノイズのあるラベルを持つデータポイントでの学習を"維持"することをモデルに促すことを示す。
論文 参考訳(メタデータ) (2020-02-16T09:12:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。