論文の概要: HOLMES: to Detect Adversarial Examples with Multiple Detectors
- arxiv url: http://arxiv.org/abs/2405.19956v1
- Date: Thu, 30 May 2024 11:22:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:47:58.249293
- Title: HOLMES: to Detect Adversarial Examples with Multiple Detectors
- Title(参考訳): HOLMES:複数検出器を用いた逆例検出
- Authors: Jing Wen,
- Abstract要約: HOLMESは、高い精度と偽陽性率の低い複数の攻撃から、テクスチュンシンの敵の例を識別することができる。
我々の効果的で安価な戦略は、オリジナルのDNNモデルを変更したり、内部パラメータを必要としたりしない。
- 参考スコア(独自算出の注目度): 1.455585466338228
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks (DNNs) can easily be cheated by some imperceptible but purposeful noise added to images, and erroneously classify them. Previous defensive work mostly focused on retraining the models or detecting the noise, but has either shown limited success rates or been attacked by new adversarial examples. Instead of focusing on adversarial images or the interior of DNN models, we observed that adversarial examples generated by different algorithms can be identified based on the output of DNNs (logits). Logit can serve as an exterior feature to train detectors. Then, we propose HOLMES (Hierarchically Organized Light-weight Multiple dEtector System) to reinforce DNNs by detecting potential adversarial examples to minimize the threats they may bring in practical. HOLMES is able to distinguish \textit{unseen} adversarial examples from multiple attacks with high accuracy and low false positive rates than single detector systems even in an adaptive model. To ensure the diversity and randomness of detectors in HOLMES, we use two methods: training dedicated detectors for each label and training detectors with top-k logits. Our effective and inexpensive strategies neither modify original DNN models nor require its internal parameters. HOLMES is not only compatible with all kinds of learning models (even only with external APIs), but also complementary to other defenses to achieve higher detection rates (may also fully protect the system against various adversarial examples).
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、画像に付加された意図しないノイズによって容易に騙され、誤って分類される。
以前の防御作業は主にモデルの再訓練やノイズの検出に重点を置いていたが、成功率に制限があったり、新たな敵の攻撃を受けたりした。
逆画像やDNNモデルの内部に焦点をあてるのではなく、異なるアルゴリズムで生成された逆例をDNN(logits)の出力に基づいて識別できることを示した。
ロジットは検出器を訓練するための外装として機能する。
そこで,本研究では,DNNの強化を目的としたHOLMES(Hierarchically Organized Light-weight Multiple dEtector System)を提案する。
HOLMESは、適応モデルでも単一検出器システムよりも精度が高く、偽陽性率の低い複数の攻撃から \textit{unseen} 逆の例を識別することができる。
HOLMESにおける検出器の多様性とランダム性を確保するために,ラベルごとに専用の検出器を訓練し,トップkロジットで検出器を訓練する2つの手法を用いる。
我々の効果的で安価な戦略は、オリジナルのDNNモデルを変更したり、内部パラメータを必要としたりしない。
HOLMESは、あらゆる種類の学習モデル(外部APIに限らず)と互換性があるだけでなく、高い検出率を達成するために他の防御を補完する(様々な敵の例からシステムを完全に保護する)。
関連論文リスト
- Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
本稿では,高頻度情報強調戦略に基づく逆例検出フレームワークを提案する。
このフレームワークは、敵の例と通常の例との特徴的差異を効果的に抽出し、増幅することができる。
論文 参考訳(メタデータ) (2023-05-08T03:14:01Z) - EMShepherd: Detecting Adversarial Samples via Side-channel Leakage [6.868995628617191]
敵対的攻撃は、ディープラーニングを駆使したクリティカルな応用にとって悲惨な結果をもたらす。
モデル実行の電磁的トレースを捕捉し、トレース上で処理を行い、敵検出に利用するためのフレームワークEMShepherdを提案する。
提案手法は,一般的に使用されているFPGA深層学習アクセラレータ上で,異なる敵攻撃を効果的に検出できることを実証する。
論文 参考訳(メタデータ) (2023-03-27T19:38:55Z) - Nowhere to Hide: A Lightweight Unsupervised Detector against Adversarial
Examples [14.332434280103667]
敵対的な例は、わずかながら悪質に作られた摂動を良心的なイメージに追加することによって生成される。
本稿では,AutoEncoderを用いたAdversarial Examples検出器を提案する。
AEAEは、最先端の攻撃に対して教師なしで安価であることを実証的に示す。
論文 参考訳(メタデータ) (2022-10-16T16:29:47Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
既存のノベルティ検出器は敵の例に感受性があることが示される。
本稿では, 新規性検知器の潜伏空間を制御し, 敵に対する堅牢性を向上する防衛戦略を提案する。
論文 参考訳(メタデータ) (2021-08-25T10:41:29Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Self-Supervised Adversarial Example Detection by Disentangled
Representation [16.98476232162835]
判別器ネットワークが支援するオートエンコーダを,正しくペア化されたクラス/セマンティクス特徴と誤ったペアのクラス/セマンティクス特徴の両方から訓練し,良性と反例を再構築する。
これは逆例の振る舞いを模倣し、オートエンコーダの不要な一般化能力を減らすことができる。
本手法は,最先端の自己監視検出手法と比較して,様々な測定結果において優れた性能を示す。
論文 参考訳(メタデータ) (2021-05-08T12:48:18Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。