Collective Variable Free Transition Path Sampling with Generative Flow Network
- URL: http://arxiv.org/abs/2405.19961v3
- Date: Thu, 18 Jul 2024 07:04:46 GMT
- Title: Collective Variable Free Transition Path Sampling with Generative Flow Network
- Authors: Kiyoung Seong, Seonghyun Park, Seonghwan Kim, Woo Youn Kim, Sungsoo Ahn,
- Abstract summary: We propose to leverage generative flow networks (GFlowNets) to sample transition paths without relying on collective variables (CVs)
We reformulate the problem as amortized energy-based sampling over transition paths and train a neural bias potential by minimizing the squared log-ratio between the target distribution and the generator.
Our approach, called TPS-GFN, generates more realistic and diverse transition paths than the previous CV-free machine learning approach.
- Score: 10.210248065533133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding transition paths between meta-stable states in molecular systems is fundamental for material design and drug discovery. However, sampling these paths via unbiased molecular dynamics simulations is computationally prohibitive due to the high energy barriers between the meta-stable states. Recent machine learning approaches are often restricted to simple systems or rely on collective variables (CVs) extracted from expensive domain knowledge. In this work, we propose to leverage generative flow networks (GFlowNets) to sample transition paths without relying on CVs. We reformulate the problem as amortized energy-based sampling over transition paths and train a neural bias potential by minimizing the squared log-ratio between the target distribution and the generator, derived from the flow matching objective of GFlowNets. Our evaluation on three proteins (Alanine Dipeptide, Polyproline Helix, and Chignolin) demonstrates that our approach, called TPS-GFN, generates more realistic and diverse transition paths than the previous CV-free machine learning approach.
Related papers
- Locality Preserving Markovian Transition for Instance Retrieval [59.16243976912006]
We introduce the Locality Preserving Markovian Transition (LPMT) framework, which employs a long-term thermodynamic transition process with multiple states for accurate manifold distance measurement.<n>The proposed LPMT first integrates diffusion processes across separate graphs using Bidirectional Collaborative Diffusion (BCD) to establish strong similarity relationships.<n>After, Locality State Embedding (LSE) encodes each instance into a distribution for enhanced local consistency.<n>These distributions are interconnected via the Thermodynamic Markovian Transition (TMT) process, enabling efficient global retrieval while maintaining local effectiveness.
arXiv Detail & Related papers (2025-06-05T16:07:31Z) - Variational Schrödinger Momentum Diffusion [15.074672636555755]
We introduce variational Schr"odinger momentum diffusion (VSMD) to eliminate the dependence on simulated forward trajectories.
Our approach scales effectively to real-world data, achieving competitive results in time series and image generation.
arXiv Detail & Related papers (2025-01-28T03:19:58Z) - Sequential Controlled Langevin Diffusions [80.93988625183485]
Two popular methods are (1) Sequential Monte Carlo (SMC), where the transport is performed through successive densities via prescribed Markov chains and resampling steps, and (2) recently developed diffusion-based sampling methods, where a learned dynamical transport is used.
We present a principled framework for combining SMC with diffusion-based samplers by viewing both methods in continuous time and considering measures on path space.
This culminates in the new Sequential Controlled Langevin Diffusion (SCLD) sampling method, which is able to utilize the benefits of both methods and reaches improved performance on multiple benchmark problems, in many cases using only 10% of the training budget of previous diffusion-
arXiv Detail & Related papers (2024-12-10T00:47:10Z) - Generalized Flow Matching for Transition Dynamics Modeling [14.76793118877456]
We propose a data-driven approach to warm-up the simulation by learning nonlinearities from local dynamics.
Specifically, we infer a potential energy function from local dynamics data to find plausible paths between two metastable states.
We validate the effectiveness of the proposed method to sample probable paths on both synthetic and real-world molecular systems.
arXiv Detail & Related papers (2024-10-19T15:03:39Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
We propose a variational inference approach to sample from the posterior distribution for solving inverse problems.
We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Transition Path Sampling with Boltzmann Generator-based MCMC Moves [49.69940954060636]
Current approaches to sample transition paths use Markov chain Monte Carlo and rely on time-intensive molecular dynamics simulations to find new paths.
Our approach operates in the latent space of a normalizing flow that maps from the molecule's Boltzmann distribution to a Gaussian, where we propose new paths without requiring molecular simulations.
arXiv Detail & Related papers (2023-12-08T20:05:33Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds.
We propose formulating PCR as a denoising diffusion probabilistic process, mapping noisy transformations to the ground truth.
Our experiments showcase the effectiveness of our DiffusionPCR, yielding state-of-the-art registration recall rates (95.3%/81.6%) on 3D and 3DLoMatch.
arXiv Detail & Related papers (2023-12-05T18:59:41Z) - Diffusion Methods for Generating Transition Paths [6.222135766747873]
In this work, we seek to simulate rare transitions between metastable states using score-based generative models.
We develop two novel methods for path generation in this paper: a chain-based approach and a midpoint-based approach.
Numerical results of generated transition paths for the M"uller potential and for Alanine dipeptide demonstrate the effectiveness of these approaches in both the data-rich and data-scarce regimes.
arXiv Detail & Related papers (2023-09-19T03:03:03Z) - Efficient Multimodal Sampling via Tempered Distribution Flow [11.36635610546803]
We develop a new type of transport-based sampling method called TemperFlow.
Various experiments demonstrate the superior performance of this novel sampler compared to traditional methods.
We show its applications in modern deep learning tasks such as image generation.
arXiv Detail & Related papers (2023-04-08T06:40:06Z) - Enhanced Sampling of Configuration and Path Space in a Generalized
Ensemble by Shooting Point Exchange [71.49868712710743]
We propose a new approach to simulate rare events caused by transitions between long-lived states.
The scheme substantially enhances the efficiency of the transition path sampling simulations.
It yields information on thermodynamics, kinetics and reaction coordinates of molecular processes without distorting their dynamics.
arXiv Detail & Related papers (2023-02-17T08:41:31Z) - Conditioning Normalizing Flows for Rare Event Sampling [61.005334495264194]
We propose a transition path sampling scheme based on neural-network generated configurations.
We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region.
arXiv Detail & Related papers (2022-07-29T07:56:10Z) - Stochastic Optimal Control for Collective Variable Free Sampling of
Molecular Transition Paths [60.254555533113674]
We consider the problem of sampling transition paths between two given metastable states of a molecular system.
We propose a machine learning method for sampling said transitions.
arXiv Detail & Related papers (2022-06-27T14:01:06Z) - Generative methods for sampling transition paths in molecular dynamics [0.0]
Simulating transition paths linking one metastable state to another one is difficult by direct numerical methods.
We explore two approaches to more efficiently generate transition paths: sampling methods based on generative models such as variational autoencoders, and importance sampling methods based on reinforcement learning.
arXiv Detail & Related papers (2022-05-05T17:50:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.