Variational Schrödinger Momentum Diffusion
- URL: http://arxiv.org/abs/2501.16675v1
- Date: Tue, 28 Jan 2025 03:19:58 GMT
- Title: Variational Schrödinger Momentum Diffusion
- Authors: Kevin Rojas, Yixin Tan, Molei Tao, Yuriy Nevmyvaka, Wei Deng,
- Abstract summary: We introduce variational Schr"odinger momentum diffusion (VSMD) to eliminate the dependence on simulated forward trajectories.
Our approach scales effectively to real-world data, achieving competitive results in time series and image generation.
- Score: 15.074672636555755
- License:
- Abstract: The momentum Schr\"odinger Bridge (mSB) has emerged as a leading method for accelerating generative diffusion processes and reducing transport costs. However, the lack of simulation-free properties inevitably results in high training costs and affects scalability. To obtain a trade-off between transport properties and scalability, we introduce variational Schr\"odinger momentum diffusion (VSMD), which employs linearized forward score functions (variational scores) to eliminate the dependence on simulated forward trajectories. Our approach leverages a multivariate diffusion process with adaptively transport-optimized variational scores. Additionally, we apply a critical-damping transform to stabilize training by removing the need for score estimations for both velocity and samples. Theoretically, we prove the convergence of samples generated with optimal variational scores and momentum diffusion. Empirical results demonstrate that VSMD efficiently generates anisotropic shapes while maintaining transport efficacy, outperforming overdamped alternatives, and avoiding complex denoising processes. Our approach also scales effectively to real-world data, achieving competitive results in time series and image generation.
Related papers
- Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Transition Path Sampling with Improved Off-Policy Training of Diffusion Path Samplers [10.210248065533133]
We introduce a novel approach that trains diffusion path samplers (DPS) to address the transition path sampling problem.
We reformulate the problem as an amortized sampling from the transition path distribution by minimizing the log-variance divergence between the path distribution induced by DPS and the transition path distribution.
We extensively evaluate our approach, termed TPS-DPS, on a synthetic system, small peptide, and challenging fast-folding proteins, demonstrating that it produces more realistic and diverse transition pathways than existing baselines.
arXiv Detail & Related papers (2024-05-30T11:32:42Z) - Variational Schrödinger Diffusion Models [14.480273869571468]
Schr"odinger bridge (SB) has emerged as the go-to method for optimizing transportation plans in diffusion models.
We leverage variational inference to linearize the forward score functions (variational scores) of SB.
We propose the variational Schr"odinger diffusion model (VSDM), where the forward process is a multivariate diffusion and the variational scores are adaptively optimized for efficient transport.
arXiv Detail & Related papers (2024-05-08T04:01:40Z) - Fast Sampling via Discrete Non-Markov Diffusion Models with Predetermined Transition Time [49.598085130313514]
We propose discrete non-Markov diffusion models (DNDM), which naturally induce the predetermined transition time set.
This enables a training-free sampling algorithm that significantly reduces the number of function evaluations.
We study the transition from finite to infinite step sampling, offering new insights into bridging the gap between discrete and continuous-time processes.
arXiv Detail & Related papers (2023-12-14T18:14:11Z) - Stochastic Latent Transformer: Efficient Modelling of Stochastically
Forced Zonal Jets [0.0]
We present a novel deep probabilistic learning approach, the 'Stochastic Latent Transformer' (SLT)
The SLT accurately reproduces system dynamics across various integration periods, validated through quantitative diagnostics.
It achieves a five-order-of-magnitude speedup in emulating the zonally-averaged flow.
arXiv Detail & Related papers (2023-10-25T16:17:00Z) - Fast Diffusion Model [122.36693015093041]
Diffusion models (DMs) have been adopted across diverse fields with their abilities in capturing intricate data distributions.
In this paper, we propose a Fast Diffusion Model (FDM) to significantly speed up DMs from a DM optimization perspective.
arXiv Detail & Related papers (2023-06-12T09:38:04Z) - Diffusion Bridge Mixture Transports, Schr\"odinger Bridge Problems and
Generative Modeling [4.831663144935879]
We propose a novel sampling-based iterative algorithm, the iterated diffusion bridge mixture (IDBM) procedure, aimed at solving the dynamic Schr"odinger bridge problem.
The IDBM procedure exhibits the attractive property of realizing a valid transport between the target probability measures at each iteration.
arXiv Detail & Related papers (2023-04-03T12:13:42Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.