DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild
- URL: http://arxiv.org/abs/2405.19996v3
- Date: Mon, 3 Jun 2024 11:32:40 GMT
- Title: DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild
- Authors: Honghao Fu, Yufei Wang, Wenhan Yang, Bihan Wen,
- Abstract summary: We propose a novel IQA method called diffusion priors-based IQA (DP-IQA)
We use pre-trained stable diffusion as the backbone, extract multi-level features from the denoising U-Net, and decode them to estimate the image quality score.
We distill the knowledge in the above model into a CNN-based student model, significantly reducing the parameter to enhance applicability.
- Score: 54.139923409101044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image quality assessment (IQA) plays a critical role in selecting high-quality images and guiding compression and enhancement methods in a series of applications. The blind IQA, which assesses the quality of in-the-wild images containing complex authentic distortions without reference images, poses greater challenges. Existing methods are limited to modeling a uniform distribution with local patches and are bothered by the gap between low and high-level visions (caused by widely adopted pre-trained classification networks). In this paper, we propose a novel IQA method called diffusion priors-based IQA (DP-IQA), which leverages the prior knowledge from the pre-trained diffusion model with its excellent powers to bridge semantic gaps in the perception of the visual quality of images. Specifically, we use pre-trained stable diffusion as the backbone, extract multi-level features from the denoising U-Net during the upsampling process at a specified timestep, and decode them to estimate the image quality score. The text and image adapters are adopted to mitigate the domain gap for downstream tasks and correct the information loss caused by the variational autoencoder bottleneck. Finally, we distill the knowledge in the above model into a CNN-based student model, significantly reducing the parameter to enhance applicability, with the student model performing similarly or even better than the teacher model surprisingly. Experimental results demonstrate that our DP-IQA achieves state-of-the-art results on various in-the-wild datasets with better generalization capability, which shows the superiority of our method in global modeling and utilizing the hierarchical feature clues of diffusion for evaluating image quality.
Related papers
- TRIQA: Image Quality Assessment by Contrastive Pretraining on Ordered Distortion Triplets [31.2422359004089]
No-Reference (NR) IQA remains particularly challenging due to the absence of a reference image.<n>We propose a novel approach that constructs a custom dataset using a limited number of reference content images.<n>We train a quality-aware model using contrastive triplet-based learning, enabling efficient training with fewer samples.
arXiv Detail & Related papers (2025-07-16T23:43:12Z) - Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization [55.09893295671917]
This paper introduces a novel Gradient-Regulated Meta-Prompt IQA Framework (GRMP-IQA)
The GRMP-IQA comprises two key modules: Meta-Prompt Pre-training Module and Quality-Aware Gradient Regularization.
Experiments on five standard BIQA datasets demonstrate the superior performance to the state-of-the-art BIQA methods under limited data setting.
arXiv Detail & Related papers (2024-09-09T07:26:21Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLM-based Image Quality Assessment (IQA) seeks to describe image quality linguistically to align with human expression.
We introduce Depicted image Quality Assessment in the Wild (DepictQA-Wild)
Our method includes a multi-functional IQA task paradigm that encompasses both assessment and comparison tasks, brief and detailed responses, full-reference and non-reference scenarios.
arXiv Detail & Related papers (2024-05-29T07:49:15Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
We propose a novel Contrastive Learning (SCL) and Transformer-based NR-IQA model SaTQA.
We first train a model on a large-scale synthetic dataset by SCL to extract degradation features of images with various distortion types and levels.
To further extract distortion information from images, we propose a backbone network incorporating the Multi-Stream Block (MSB) by combining the CNN inductive bias and Transformer long-term dependence modeling capability.
Experimental results on seven standard IQA datasets show that SaTQA outperforms the state-of-the-art methods for both synthetic and authentic datasets
arXiv Detail & Related papers (2023-12-12T06:01:41Z) - Learning Generalizable Perceptual Representations for Data-Efficient
No-Reference Image Quality Assessment [7.291687946822539]
A major drawback of state-of-the-art NR-IQA techniques is their reliance on a large number of human annotations.
We enable the learning of low-level quality features to distortion types by introducing a novel quality-aware contrastive loss.
We design zero-shot quality predictions from both pathways in a completely blind setting.
arXiv Detail & Related papers (2023-12-08T05:24:21Z) - Attentions Help CNNs See Better: Attention-based Hybrid Image Quality
Assessment Network [20.835800149919145]
Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality.
There is a performance drop when assessing distortion images generated by generative adversarial network (GAN) with seemingly realistic texture.
We propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task.
arXiv Detail & Related papers (2022-04-22T03:59:18Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - Continual Learning for Blind Image Quality Assessment [80.55119990128419]
Blind image quality assessment (BIQA) models fail to continually adapt to subpopulation shift.
Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets.
We formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets.
arXiv Detail & Related papers (2021-02-19T03:07:01Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
We develop a textitunified BIQA model and an approach of training it for both synthetic and realistic distortions.
We employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs.
Experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild.
arXiv Detail & Related papers (2020-05-28T13:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.