subMFL: Compatiple subModel Generation for Federated Learning in Device Heterogenous Environment
- URL: http://arxiv.org/abs/2405.20014v1
- Date: Thu, 30 May 2024 12:49:34 GMT
- Title: subMFL: Compatiple subModel Generation for Federated Learning in Device Heterogenous Environment
- Authors: Zeyneddin Oz, Ceylan Soygul Oz, Abdollah Malekjafarian, Nima Afraz, Fatemeh Golpayegani,
- Abstract summary: Federated Learning (FL) is commonly used in systems with distributed and heterogeneous devices.
We propose a model compression approach that enables heterogeneous devices with varying computing capacities to participate in the FL process.
- Score: 0.2796197251957244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is commonly used in systems with distributed and heterogeneous devices with access to varying amounts of data and diverse computing and storage capacities. FL training process enables such devices to update the weights of a shared model locally using their local data and then a trusted central server combines all of those models to generate a global model. In this way, a global model is generated while the data remains local to devices to preserve privacy. However, training large models such as Deep Neural Networks (DNNs) on resource-constrained devices can take a prohibitively long time and consume a large amount of energy. In the current process, the low-capacity devices are excluded from the training process, although they might have access to unseen data. To overcome this challenge, we propose a model compression approach that enables heterogeneous devices with varying computing capacities to participate in the FL process. In our approach, the server shares a dense model with all devices to train it: Afterwards, the trained model is gradually compressed to obtain submodels with varying levels of sparsity to be used as suitable initial global models for resource-constrained devices that were not capable of train the first dense model. This results in an increased participation rate of resource-constrained devices while the transferred weights from the previous round of training are preserved. Our validation experiments show that despite reaching about 50 per cent global sparsity, generated submodels maintain their accuracy while can be shared to increase participation by around 50 per cent.
Related papers
- AdapterFL: Adaptive Heterogeneous Federated Learning for
Resource-constrained Mobile Computing Systems [24.013937378054074]
Federated Learning (FL) enables collaborative learning of large-scale distributed clients without data sharing.
Mobile computing systems can only use small low-performance models for collaborative learning.
We use a model reassemble strategy to facilitate collaborative training of massive heterogeneous mobile devices adaptively.
arXiv Detail & Related papers (2023-11-23T14:42:43Z) - DFRD: Data-Free Robustness Distillation for Heterogeneous Federated
Learning [20.135235291912185]
Federated Learning (FL) is a privacy-constrained decentralized machine learning paradigm.
We propose a new FL method (namely DFRD) to learn a robust global model in the data-heterogeneous and model-heterogeneous FL scenarios.
arXiv Detail & Related papers (2023-09-24T04:29:22Z) - Toward efficient resource utilization at edge nodes in federated learning [0.6990493129893112]
Federated learning enables edge nodes to collaboratively contribute to constructing a global model without sharing their data.
computational resource constraints and network communication can become a severe bottleneck for larger model sizes typical for deep learning applications.
We propose and evaluate a FL strategy inspired by transfer learning in order to reduce resource utilization on devices.
arXiv Detail & Related papers (2023-09-19T07:04:50Z) - Fed-FSNet: Mitigating Non-I.I.D. Federated Learning via Fuzzy
Synthesizing Network [19.23943687834319]
Federated learning (FL) has emerged as a promising privacy-preserving distributed machine learning framework.
We propose a novel FL training framework, dubbed Fed-FSNet, using a properly designed Fuzzy Synthesizing Network (FSNet) to mitigate the Non-I.I.D. at-the-source issue.
arXiv Detail & Related papers (2022-08-21T18:40:51Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Gradual Federated Learning with Simulated Annealing [26.956032164461377]
Federated averaging (FedAvg) is a popular federated learning (FL) technique that updates the global model by averaging local models.
In this paper, we propose a new FL technique based on simulated annealing.
We show that SAFL outperforms the conventional FedAvg technique in terms of the convergence speed and the classification accuracy.
arXiv Detail & Related papers (2021-10-11T11:57:56Z) - Fast-Convergent Federated Learning [82.32029953209542]
Federated learning is a promising solution for distributing machine learning tasks through modern networks of mobile devices.
We propose a fast-convergent federated learning algorithm, called FOLB, which performs intelligent sampling of devices in each round of model training.
arXiv Detail & Related papers (2020-07-26T14:37:51Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
We study federated learning, which enables mobile devices to utilize their local datasets to train a global model.
We introduce a lossy FL (LFL) algorithm, in which both the global model and the local model updates are quantized before being transmitted.
arXiv Detail & Related papers (2020-06-18T16:55:20Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model.
In most of the current training schemes the central model is refined by averaging the parameters of the server model and the updated parameters from the client side.
We propose ensemble distillation for model fusion, i.e. training the central classifier through unlabeled data on the outputs of the models from the clients.
arXiv Detail & Related papers (2020-06-12T14:49:47Z) - UVeQFed: Universal Vector Quantization for Federated Learning [179.06583469293386]
Federated learning (FL) is an emerging approach to train such learning models without requiring the users to share their possibly private labeled data.
In FL, each user trains its copy of the learning model locally. The server then collects the individual updates and aggregates them into a global model.
We show that combining universal vector quantization methods with FL yields a decentralized training system in which the compression of the trained models induces only a minimum distortion.
arXiv Detail & Related papers (2020-06-05T07:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.