論文の概要: Safe Multi-agent Reinforcement Learning with Natural Language Constraints
- arxiv url: http://arxiv.org/abs/2405.20018v1
- Date: Thu, 30 May 2024 12:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:28:22.586891
- Title: Safe Multi-agent Reinforcement Learning with Natural Language Constraints
- Title(参考訳): 自然言語制約による安全なマルチエージェント強化学習
- Authors: Ziyan Wang, Meng Fang, Tristan Tomilin, Fei Fang, Yali Du,
- Abstract要約: 安全なマルチエージェント強化学習(MARL)における自然言語制約の役割は重要であるが、しばしば見過ごされる。
自然言語制約付き安全マルチエージェント強化学習(SMALL)という新しいアプローチを提案する。
提案手法は、微調整言語モデルを用いて、自由形式のテキスト制約を解釈し、処理し、セマンティックな埋め込みに変換する。
これらの埋め込みはマルチエージェントのポリシー学習プロセスに統合され、エージェントは報酬を最適化しながら制約違反を最小限に抑えるポリシーを学ぶことができる。
- 参考スコア(独自算出の注目度): 49.01100552946231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The role of natural language constraints in Safe Multi-agent Reinforcement Learning (MARL) is crucial, yet often overlooked. While Safe MARL has vast potential, especially in fields like robotics and autonomous vehicles, its full potential is limited by the need to define constraints in pre-designed mathematical terms, which requires extensive domain expertise and reinforcement learning knowledge, hindering its broader adoption. To address this limitation and make Safe MARL more accessible and adaptable, we propose a novel approach named Safe Multi-agent Reinforcement Learning with Natural Language constraints (SMALL). Our method leverages fine-tuned language models to interpret and process free-form textual constraints, converting them into semantic embeddings that capture the essence of prohibited states and behaviours. These embeddings are then integrated into the multi-agent policy learning process, enabling agents to learn policies that minimize constraint violations while optimizing rewards. To evaluate the effectiveness of SMALL, we introduce the LaMaSafe, a multi-task benchmark designed to assess the performance of multiple agents in adhering to natural language constraints. Empirical evaluations across various environments demonstrate that SMALL achieves comparable rewards and significantly fewer constraint violations, highlighting its effectiveness in understanding and enforcing natural language constraints.
- Abstract(参考訳): 安全なマルチエージェント強化学習(MARL)における自然言語制約の役割は重要であるが、しばしば見過ごされる。
Safe MARLは、特にロボティクスや自動運転車などの分野において大きな可能性を秘めているが、その大きなポテンシャルは、設計済みの数学的用語で制約を定義する必要性によって制限されている。
この制限に対処し、Safe MARLをよりアクセシブルかつ適応的にするために、Safe Multi-Adnt Reinforcement Learning with Natural Language constraints (SMALL) という新しいアプローチを提案する。
提案手法は, 微調整言語モデルを用いて, 自由形式のテキスト制約を解釈・処理し, 禁止状態や動作の本質を捉えたセマンティックな埋め込みに変換する。
これらの埋め込みはマルチエージェントのポリシー学習プロセスに統合され、エージェントは報酬を最適化しながら制約違反を最小限に抑えるポリシーを学ぶことができる。
SMALLの有効性を評価するために,自然言語制約に順応する複数のエージェントの性能を評価するマルチタスクベンチマークであるLaMaSafeを導入する。
様々な環境における実証的な評価は、SMALLが同等の報酬を達成し、制約違反を著しく少なくし、自然言語の制約を理解し、強制する効果を強調していることを示している。
関連論文リスト
- Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - Multi-Constraint Safe RL with Objective Suppression for Safety-Critical Applications [73.58451824894568]
より強力な一様制約型MDP(UCMDP)モデルを用いたマルチ制約問題について述べる。
そこで我々は,目標を最大化するタスク報酬を適応的に抑制する新しい手法であるObjective Suppressionを提案する。
我々は、自律運転領域を含む2つのマルチ制約安全領域において、客観抑制をベンチマークする。
論文 参考訳(メタデータ) (2024-02-23T23:22:06Z) - Fortifying Ethical Boundaries in AI: Advanced Strategies for Enhancing
Security in Large Language Models [3.9490749767170636]
大規模言語モデル(LLM)は、テキスト生成、翻訳、質問応答タスクに革命をもたらした。
広く使われているにもかかわらず、LLMはモデルに不適切な反応を強いられる場合の倫理的ジレンマのような課題を提示している。
本稿では,1)ユーザ入力からセンシティブな語彙をフィルタリングして非倫理的応答を防ぐ,2)"プライソンブレイク"シナリオにつながる可能性のあるインタラクションを停止するロールプレイングを検出する,4)マルチモデル大規模言語モデル(MLLM)のような様々なLLM派生語に拡張する,という課題に対処する。
論文 参考訳(メタデータ) (2024-01-27T08:09:33Z) - Safe Reinforcement Learning with Free-form Natural Language Constraints and Pre-Trained Language Models [36.44404825103045]
安全な強化学習(RL)エージェントは、特定の制約に固執しながら与えられたタスクを達成する。
本稿では,RLエージェントによる自然言語制約の理解を容易にするために,事前学習言語モデル(LM)を提案する。
提案手法は,人間由来の自然言語制約の多種多様な制約の下で,安全な政策学習を促進する。
論文 参考訳(メタデータ) (2024-01-15T09:37:03Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
この問題を解決するためにCIPHER(Communicative Inter-Model Protocol Through Embedding Representation)を導入する。
自然言語から逸脱することで、CIPHERはモデルの重みを変更することなく、より広い範囲の情報を符号化する利点を提供する。
このことは、LLM間の通信における代替の"言語"としての埋め込みの優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-10T03:06:38Z) - Controlled Text Generation with Natural Language Instructions [74.88938055638636]
InstructCTGは、異なる制約を含む制御されたテキスト生成フレームワークである。
まず、既製のNLPツールと単純な動詞の組み合わせにより、自然文の基本的制約を抽出する。
制約の自然言語記述といくつかの実演を予測することにより、様々な種類の制約を組み込むために、事前訓練された言語モデルを微調整する。
論文 参考訳(メタデータ) (2023-04-27T15:56:34Z) - Safe Reinforcement Learning with Natural Language Constraints [39.70152978025088]
我々は、安全なRLのための自然言語制約を解釈する学習を提案する。
HazardWorldは、フリーフォームテキストで指定された制約に違反することなく、報酬を最適化するエージェントを必要とする新しいマルチタスクベンチマークである。
提案手法は,既存手法と比較して,より高い報酬(最大11倍)と制約違反(最大1.8倍)を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-11T03:41:56Z) - Deep Constrained Q-learning [15.582910645906145]
多くの実世界の応用において、強化学習エージェントは特定の規則に従うか制約を満たすことなく、複数の目的を最適化する必要がある。
制約付きMDPの最適Q関数とそれに対応する安全ポリシーを学習するために,Q更新時の行動空間を直接制限する新しい非政治的強化学習フレームワークであるConstrained Q-learningを提案する。
論文 参考訳(メタデータ) (2020-03-20T17:26:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。