論文の概要: From Forest to Zoo: Great Ape Behavior Recognition with ChimpBehave
- arxiv url: http://arxiv.org/abs/2405.20025v1
- Date: Thu, 30 May 2024 13:11:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:28:22.580183
- Title: From Forest to Zoo: Great Ape Behavior Recognition with ChimpBehave
- Title(参考訳): 森林から動物園へ:チンパンジーによる類人猿の行動認識
- Authors: Michael Fuchs, Emilie Genty, Adrian Bangerter, Klaus Zuberbühler, Paul Cotofrei,
- Abstract要約: ChimpBehaveは動物園で飼育されているチンパンジーの2時間以上のビデオ(約193,000フレーム)を特徴とする新しいデータセットだ。
ChimpBehaveは、アクション認識のためのバウンディングボックスやビヘイビアラベルに細心の注意を払ってアノテートする。
我々は、最先端のCNNベースの行動認識モデルを用いてデータセットをベンチマークする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the significant challenge of recognizing behaviors in non-human primates, specifically focusing on chimpanzees. Automated behavior recognition is crucial for both conservation efforts and the advancement of behavioral research. However, it is significantly hindered by the labor-intensive process of manual video annotation. Despite the availability of large-scale animal behavior datasets, the effective application of machine learning models across varied environmental settings poses a critical challenge, primarily due to the variability in data collection contexts and the specificity of annotations. In this paper, we introduce ChimpBehave, a novel dataset featuring over 2 hours of video (approximately 193,000 video frames) of zoo-housed chimpanzees, meticulously annotated with bounding boxes and behavior labels for action recognition. ChimpBehave uniquely aligns its behavior classes with existing datasets, allowing for the study of domain adaptation and cross-dataset generalization methods between different visual settings. Furthermore, we benchmark our dataset using a state-of-the-art CNN-based action recognition model, providing the first baseline results for both within and cross-dataset settings. The dataset, models, and code can be accessed at: https://github.com/MitchFuchs/ChimpBehave
- Abstract(参考訳): 本稿では,非ヒト霊長類の行動認識における重要な課題について,特にチンパンジーに着目した。
自動行動認識は, 保全と行動研究の進展に不可欠である。
しかし、手動ビデオアノテーションの労働集約的なプロセスによって著しく妨げられている。
大規模な動物行動データセットが利用可能であるにもかかわらず、さまざまな環境設定にわたる機械学習モデルの効果的な適用は、主にデータ収集コンテキストのばらつきとアノテーションの特異性のために、重要な課題となる。
本稿では,動物園で飼育されているチンパンジーの2時間以上の動画(約193,000フレーム)を収録した新しいデータセットであるChimpBehaveについて紹介する。
ChimpBehaveは、その振る舞いクラスを既存のデータセットと一意に整合させ、異なる視覚的設定間のドメイン適応とクロスデータセットの一般化方法の研究を可能にする。
さらに、最新のCNNベースのアクション認識モデルを用いてデータセットをベンチマークし、内部およびクロスデータセット設定の両方で最初のベースライン結果を提供する。
データセット、モデル、コードは、https://github.com/MitchFuchs/ChimpBehaveでアクセスできます。
関連論文リスト
- ChimpVLM: Ethogram-Enhanced Chimpanzee Behaviour Recognition [5.253376886484742]
本稿では,カメラトラップ映像から直接抽出した視覚特徴のマルチモーダルデコードを利用する視覚言語モデルを提案する。
我々はPanAf500とPanAf20Kのデータセットを用いてシステムを評価する。
トップ1の精度で視覚モデルと視覚言語モデルに対して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-04-13T09:17:51Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
そこで本研究では,仮想人間を含む合成データを用いて,実世界の映像を活用してモデルを事前学習するベンチマークを提案する。
次に、このデータに基づいて学習した表現を、下流行動認識ベンチマークの様々なセットに転送可能であるかを評価する。
私たちのアプローチは、以前のベースラインを最大5%上回ります。
論文 参考訳(メタデータ) (2023-11-10T18:38:14Z) - Meerkat Behaviour Recognition Dataset [3.53348643468069]
本稿では,多彩なアノテーション付き行動認識ビデオデータセットについて紹介する。
このデータセットにはウェリントン動物園(ニュージーランドのウェリントン)のメアカットの囲いの2箇所のビデオが含まれている。
論文 参考訳(メタデータ) (2023-06-20T06:50:50Z) - CVB: A Video Dataset of Cattle Visual Behaviors [13.233877352490923]
牛の行動認識のための既存のデータセットは、ほとんど小さく、明確に定義されたラベルがないか、非現実的な制御環境で収集される。
キャトル・ビジュアル・ビヘイビアス (CVB) と呼ばれる新しいデータセットを導入し、502本のビデオクリップを15秒毎に撮影し、自然の照明条件で撮影し、11種類の視覚的に知覚できる牛の行動に注釈を付ける。
論文 参考訳(メタデータ) (2023-05-26T00:44:11Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
本稿では,映像中の生物学的行動を検出するための,効率的なコンピュータビジョンと深層学習に基づく手法を提案する。
TempNetはエンコーダブリッジと残留ブロックを使用して、2段階の空間的、そして時間的、エンコーダでモデル性能を維持する。
本研究では,サブルフィッシュ (Anoplopoma fimbria) 幼虫の検出への応用を実証する。
論文 参考訳(メタデータ) (2022-11-17T23:55:12Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Animal Kingdom: A Large and Diverse Dataset for Animal Behavior
Understanding [4.606145900630665]
大規模で多様なデータセットであるAnimal Kingdomを作成し、複数の注釈付きタスクを提供します。
私たちのデータセットには、関連する動物行動セグメントをローカライズする50時間のアノテーション付きビデオが含まれています。
本研究では,未確認新種動物を用いた行動認識の一般的な特徴と特定の特徴を学習する協調行動認識(CARe)モデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T02:05:15Z) - SuperAnimal pretrained pose estimation models for behavioral analysis [42.206265576708255]
行動の定量化は神経科学、獣医学、動物保護活動など様々な応用において重要である。
我々は、SuperAnimalと呼ばれる新しい手法で統一基盤モデルを開発するための一連の技術革新を提案する。
論文 参考訳(メタデータ) (2022-03-14T18:46:57Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
より一般的な対象検出器やセグメンタなどと同様に、密集したポーズ認識に存在する知識を、他のクラスにおける密集したポーズ認識の問題に移すことが可能であることを示す。
我々は、人間と幾何学的に整合した新しい動物のためのDensePoseモデルを確立することでこれを行う。
また、クラスチンパンジーにDensePoseの方法でラベル付けされた2つのベンチマークデータセットを導入し、アプローチを評価するためにそれらを使用します。
論文 参考訳(メタデータ) (2020-02-28T21:43:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。