論文の概要: Threshold-Independent Fair Matching through Score Calibration
- arxiv url: http://arxiv.org/abs/2405.20051v1
- Date: Thu, 30 May 2024 13:37:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:18:37.739383
- Title: Threshold-Independent Fair Matching through Score Calibration
- Title(参考訳): スコア校正による閾値非依存フェアマッチング
- Authors: Mohammad Hossein Moslemi, Mostafa Milani,
- Abstract要約: 我々は、スコアベースのバイナリ分類におけるバイアスを評価するために、最近のメトリクスを使用して、エンティティマッチング(EM)に新しいアプローチを導入する。
このアプローチは、しきい値の設定に依存することなく、等化オッズ、等化オッズ、人口比率などの様々なバイアスメトリクスの適用を可能にする。
本稿では,データクリーニングにおける公正性の分野,特にEM内での公正性に寄与する。
- 参考スコア(独自算出の注目度): 1.5530839016602822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entity Matching (EM) is a critical task in numerous fields, such as healthcare, finance, and public administration, as it identifies records that refer to the same entity within or across different databases. EM faces considerable challenges, particularly with false positives and negatives. These are typically addressed by generating matching scores and apply thresholds to balance false positives and negatives in various contexts. However, adjusting these thresholds can affect the fairness of the outcomes, a critical factor that remains largely overlooked in current fair EM research. The existing body of research on fair EM tends to concentrate on static thresholds, neglecting their critical impact on fairness. To address this, we introduce a new approach in EM using recent metrics for evaluating biases in score based binary classification, particularly through the lens of distributional parity. This approach enables the application of various bias metrics like equalized odds, equal opportunity, and demographic parity without depending on threshold settings. Our experiments with leading matching methods reveal potential biases, and by applying a calibration technique for EM scores using Wasserstein barycenters, we not only mitigate these biases but also preserve accuracy across real world datasets. This paper contributes to the field of fairness in data cleaning, especially within EM, which is a central task in data cleaning, by promoting a method for generating matching scores that reduce biases across different thresholds.
- Abstract(参考訳): エンティティマッチング(EM)は、医療、金融、行政など多くの分野において重要なタスクであり、異なるデータベース内または異なるデータベース間で同じエンティティを参照するレコードを識別する。
EMは、特に偽陽性と陰性で、かなりの課題に直面している。
これらは典型的には、一致するスコアを生成し、様々な文脈で偽陽性と負のバランスをとる閾値を適用することで対処される。
しかし、これらの閾値を調整することは結果の公平性に影響を与える可能性がある。
フェアEMに関する既存の研究機関は静的しきい値に集中し、フェアネスに重大な影響を無視する傾向にある。
そこで本稿では, スコアベースバイナリ分類におけるバイアス評価の手法として, 特に分布パリティのレンズを用いたEMの新しい手法を提案する。
このアプローチは、しきい値の設定に依存することなく、等化オッズ、等化オッズ、人口比率などの様々なバイアスメトリクスの適用を可能にする。
先行マッチング手法による実験により,潜在的なバイアスが明らかとなり,Wasserstein Barycentersを用いたEMスコアのキャリブレーション手法の適用により,これらのバイアスを緩和するだけでなく,実世界のデータセットの精度も維持する。
本稿では,データクリーニングにおける公平性の分野,特にデータクリーニングにおける中心的な課題であるEM内での公平性に寄与する。
関連論文リスト
- Mitigating Matching Biases Through Score Calibration [1.5530839016602822]
レコードマッチングにおけるバイアスの結果は、人口集団間での不平等なエラー率をもたらし、倫理的および法的懸念を提起する。
本稿では,従来の回帰モデルに適用された公正度指標を適用し,レコードマッチングにおけるすべてのしきい値の累積バイアスを評価する。
本稿では, 最適輸送理論とワッサーシュタインバリセンタを利用して, 階層群間でのマッチングスコアのバランスをとることを目的とした, ポストプロセッシングキャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2024-11-03T21:01:40Z) - Through the Fairness Lens: Experimental Analysis and Evaluation of
Entity Matching [17.857838691801884]
アルゴリズムの公平さは、機械バイアスとその社会的影響に対処するためのタイムリーなトピックとなっている。
これら2つのトピックに関する広範な研究にもかかわらず、エンティティマッチングの公平性にはほとんど注意が払われていない。
フェアネスのレンズを通してEMを監査するためのソーシャルデータセットを2つ生成する。
論文 参考訳(メタデータ) (2023-07-06T02:21:08Z) - When mitigating bias is unfair: multiplicity and arbitrariness in algorithmic group fairness [8.367620276482056]
本稿では,5次元によるバイアス緩和を評価するFRAME(FaiRness Arbitrariness and Multiplicity Evaluation)フレームワークを紹介する。
FRAMEをキーデータセット全体にわたる様々なバイアス緩和アプローチに適用することにより、デバイアス手法の挙動に顕著な違いを示すことができる。
これらの知見は、現在の公平性基準の限界と、偏見過程における固有の仲裁性を強調している。
論文 参考訳(メタデータ) (2023-02-14T16:53:52Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Debiasing Neural Retrieval via In-batch Balancing Regularization [25.941718123899356]
我々は,nPRF上でのT-統計を有効活用し,公平性を向上させるために,識別可能なテキストトナー付きペアワイドランキングフェアネス(nPRF)を開発した。
nPRF を用いた手法は,ベースラインに比べてランク付け性能の低下が最小限に抑えられ,バイアスが大幅に低減される。
論文 参考訳(メタデータ) (2022-05-18T22:57:15Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Domain-Incremental Continual Learning for Mitigating Bias in Facial
Expression and Action Unit Recognition [5.478764356647437]
FERシステムの公平性を高めるための強力なバイアス軽減法として,Continual Learning (CL) の新たな利用法を提案する。
表現認識と行動ユニット(AU)検出タスクにおける分類精度と公平度スコアについて,非CL法とCL法との比較を行った。
実験の結果,CLに基づく手法は,精度と公正度の両方において,他の一般的なバイアス緩和手法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-15T18:22:17Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。