論文の概要: The Fine-Tuning Paradox: Boosting Translation Quality Without Sacrificing LLM Abilities
- arxiv url: http://arxiv.org/abs/2405.20089v1
- Date: Thu, 30 May 2024 14:25:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:08:52.114678
- Title: The Fine-Tuning Paradox: Boosting Translation Quality Without Sacrificing LLM Abilities
- Title(参考訳): 微調整パラドックス:LLM能力を犠牲にすることなく翻訳品質を高める
- Authors: David Stap, Eva Hasler, Bill Byrne, Christof Monz, Ke Tran,
- Abstract要約: 機械翻訳のための微調整大型言語モデル(LLM)は、全体的な翻訳品質が改善されている。
モデルサイズは70億から65億までの範囲で,LLaMAおよびファルコン系のモデルに対して広範な翻訳評価を行う。
フォーマルなステアリングを行う能力の低下、数ショットの例による技術的翻訳の作成、文書レベルの翻訳を行う能力の低下を観察する。
- 参考スコア(独自算出の注目度): 18.175795328685986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning large language models (LLMs) for machine translation has shown improvements in overall translation quality. However, it is unclear what is the impact of fine-tuning on desirable LLM behaviors that are not present in neural machine translation models, such as steerability, inherent document-level translation abilities, and the ability to produce less literal translations. We perform an extensive translation evaluation on the LLaMA and Falcon family of models with model size ranging from 7 billion up to 65 billion parameters. Our results show that while fine-tuning improves the general translation quality of LLMs, several abilities degrade. In particular, we observe a decline in the ability to perform formality steering, to produce technical translations through few-shot examples, and to perform document-level translation. On the other hand, we observe that the model produces less literal translations after fine-tuning on parallel data. We show that by including monolingual data as part of the fine-tuning data we can maintain the abilities while simultaneously enhancing overall translation quality. Our findings emphasize the need for fine-tuning strategies that preserve the benefits of LLMs for machine translation.
- Abstract(参考訳): 機械翻訳のための微調整大型言語モデル(LLM)は、全体的な翻訳品質が改善されている。
しかし、ステアビリティ、本質的な文書レベルの翻訳能力、リテラルの少ない翻訳能力など、ニューラルネットワーク翻訳モデルに存在しない望ましいLCM動作に微調整が与える影響は明らかでない。
モデルサイズは70億から65億のパラメータまで様々である。
その結果, 微調整によりLLMの翻訳品質は向上するが, いくつかの能力は低下することがわかった。
特に、フォーマルなステアリングを行う能力の低下、少数例による技術的翻訳の作成、文書レベルの翻訳を行う能力の低下を観察する。
一方,並列データに微調整を施した後のリテラルの減少が観察された。
細調整データの一部として単言語データを含めることで,全体の翻訳品質を同時に向上しながら能力を維持することができることを示す。
本研究は,機械翻訳におけるLLMの利点を保った微調整戦略の必要性を強調した。
関連論文リスト
- TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Fine-Tuning Large Language Models to Translate: Will a Touch of Noisy Data in Misaligned Languages Suffice? [33.376648335299116]
大きな言語モデル(LLM)は、32のパラレル文で微調整された後、強い翻訳能力を示す。
英語のみを対象とするLLMは、非英語への翻訳を妨げるタスクの誤解釈につながる可能性がある。
未表現言語で合成されたデータは、顕著な効果が低い。
論文 参考訳(メタデータ) (2024-04-22T12:21:12Z) - A Preference-driven Paradigm for Enhanced Translation with Large Language Models [33.51585908894444]
大規模言語モデル(LLM)は,少数の並列データのみを用いて,優れた翻訳性能を実現する。
SFTは単にトークンレベルで参照翻訳を模倣するようにモデルに指示し、参照に存在するノイズに弱い。
この高原を克服するために、Planet-Luceモデルに基づく嗜好に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-17T11:52:47Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - GenTranslate: Large Language Models are Generative Multilingual Speech and Machine Translators [45.49880507108965]
GenTranslate"は、N-bestリストの多種多様な翻訳バージョンからより良い結果を生成するために、大きな言語モデルの上に構築されている。
我々の新しいパラダイムは、より高品質な翻訳結果を生成するために、N-best候補にリッチな情報を統合することができる。
論文 参考訳(メタデータ) (2024-02-10T07:20:49Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
大規模言語モデル(LLM)は、様々な自然言語処理タスクでかなりの成功を収めている。
ニューラルネットワーク翻訳における最先端性能は,まだ達成できていない。
直接翻訳者ではなく,自動編集者 (APE) としてLLMを適用することを提案する。
論文 参考訳(メタデータ) (2023-10-23T12:22:15Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
我々は「あいまいな文」を翻訳する大規模言語モデルの能力について研究する。
実験の結果,提案手法はDeepLやNLLBといった最先端システムと5つの言語方向のうち4つで一致し,性能を向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-20T22:22:52Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
大規模言語モデル(LLM)は、一般的なシナリオにおいて印象的な機能を示している。
本研究は,マルチアスペクト・プロンプトと選択のためのMAPSフレームワークを提案する。
品質推定に基づく選択機構を用いて,ノイズや不ヘッピーな知識を抽出する。
論文 参考訳(メタデータ) (2023-05-06T19:03:12Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
表現レベルと勾配レベルの両方でNMTモデルを正規化するための共同手法を提案する。
提案手法は,オフターゲット翻訳の発生率の低減とゼロショット翻訳性能の向上に有効であることを示す。
論文 参考訳(メタデータ) (2021-09-10T10:52:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。