Federated and Transfer Learning for Cancer Detection Based on Image Analysis
- URL: http://arxiv.org/abs/2405.20126v1
- Date: Thu, 30 May 2024 15:07:30 GMT
- Title: Federated and Transfer Learning for Cancer Detection Based on Image Analysis
- Authors: Amine Bechar, Youssef Elmir, Yassine Himeur, Rafik Medjoudj, Abbes Amira,
- Abstract summary: This review article discusses the roles of federated learning (FL) and transfer learning (TL) in cancer detection based on image analysis.
FL enables the training of machine learning models on data distributed across multiple sites without the need for centralized data sharing.
TL allows for the transfer of knowledge from one task to another.
- Score: 2.696333064387343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This review article discusses the roles of federated learning (FL) and transfer learning (TL) in cancer detection based on image analysis. These two strategies powered by machine learning have drawn a lot of attention due to their potential to increase the precision and effectiveness of cancer diagnosis in light of the growing importance of machine learning techniques in cancer detection. FL enables the training of machine learning models on data distributed across multiple sites without the need for centralized data sharing, while TL allows for the transfer of knowledge from one task to another. A comprehensive assessment of the two methods, including their strengths, and weaknesses is presented. Moving on, their applications in cancer detection are discussed, including potential directions for the future. Finally, this article offers a thorough description of the functions of TL and FL in image-based cancer detection. The authors also make insightful suggestions for additional study in this rapidly developing area.
Related papers
- Advanced Deep Learning and Large Language Models: Comprehensive Insights for Cancer Detection [5.428095624923599]
Deep learning (DL) has transformed healthcare, particularly in cancer detection and diagnosis.
Despite numerous reviews on DL in healthcare, a comprehensive analysis of its role in cancer detection remains limited.
This paper addresses these gaps by reviewing advanced DL techniques, including transfer learning (TL), reinforcement learning (RL), federated learning (FL), Transformers, and large language models (LLMs)
arXiv Detail & Related papers (2025-03-30T15:17:40Z) - Deep BI-RADS Network for Improved Cancer Detection from Mammograms [3.686808512438363]
We introduce a novel multi-modal approach that combines textual BI-RADS lesion descriptors with visual mammogram content.
Our method employs iterative attention layers to effectively fuse these different modalities.
Experiments on the CBIS-DDSM dataset demonstrate substantial improvements across all metrics.
arXiv Detail & Related papers (2024-11-16T21:32:51Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Harnessing Transformers: A Leap Forward in Lung Cancer Image Detection [2.8927500190704567]
This paper discusses the role of Transfer Learning (TL) and transformers in cancer detection based on image analysis.
The identification of cancer cells in a patient's body has emerged as a trend in the field of Artificial Intelligence (AI)
arXiv Detail & Related papers (2023-11-16T14:50:42Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Adversarial learning of cancer tissue representations [6.395981404833557]
We present an adversarial learning model to extract feature representations of cancer tissue, without the need for manual annotations.
We show that these representations are able to identify a variety of morphological characteristics across three cancer types: Breast, colon, and lung.
Our results show that our model captures distinct phenotypic characteristics of real tissue samples, paving the way for further understanding of tumor progression and tumor micro-environment.
arXiv Detail & Related papers (2021-08-04T18:00:47Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - An Attention Mechanism with Multiple Knowledge Sources for COVID-19
Detection from CT Images [1.6882040908691862]
We propose a novel strategy to improve the performance of several baselines by leveraging useful information sources relevant to doctors' judgments.
Infected regions and heat maps extracted from learned networks are integrated with the global image via an attention mechanism during the learning process.
This procedure not only makes our system more robust to noise but also guides the network focusing on local lesion areas.
arXiv Detail & Related papers (2020-09-23T09:05:24Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
A novel and efficient pancreatic tumor detection framework is proposed in this paper.
The contribution of the proposed method mainly consists of three components: Augmented Feature Pyramid networks, Self-adaptive Feature Fusion and a Dependencies Computation Module.
Experimental results achieve competitive performance in detection with the AUC of 0.9455, which outperforms other state-of-the-art methods to our best of knowledge.
arXiv Detail & Related papers (2020-02-11T15:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.