Iterative Feature Boosting for Explainable Speech Emotion Recognition
- URL: http://arxiv.org/abs/2405.20172v3
- Date: Wed, 5 Jun 2024 22:28:13 GMT
- Title: Iterative Feature Boosting for Explainable Speech Emotion Recognition
- Authors: Alaa Nfissi, Wassim Bouachir, Nizar Bouguila, Brian Mishara,
- Abstract summary: We present a new supervised SER method based on an efficient feature engineering approach.
We pay particular attention to the explainability of results to evaluate feature relevance and refine feature sets.
The proposed method outperforms human-level performance (HLP) and state-of-the-art machine learning methods in emotion recognition on the TESS dataset.
- Score: 17.568724398229232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In speech emotion recognition (SER), using predefined features without considering their practical importance may lead to high dimensional datasets, including redundant and irrelevant information. Consequently, high-dimensional learning often results in decreasing model accuracy while increasing computational complexity. Our work underlines the importance of carefully considering and analyzing features in order to build efficient SER systems. We present a new supervised SER method based on an efficient feature engineering approach. We pay particular attention to the explainability of results to evaluate feature relevance and refine feature sets. This is performed iteratively through feature evaluation loop, using Shapley values to boost feature selection and improve overall framework performance. Our approach allows thus to balance the benefits between model performance and transparency. The proposed method outperforms human-level performance (HLP) and state-of-the-art machine learning methods in emotion recognition on the TESS dataset. The source code of this paper is publicly available at https://github.com/alaaNfissi/Iterative-Feature-Boosting-for-Explainable-Speech-Emotion-Recognition.
Related papers
- Unveiling Hidden Factors: Explainable AI for Feature Boosting in Speech Emotion Recognition [17.568724398229232]
Speech emotion recognition (SER) has gained significant attention due to its several application fields, such as mental health, education, and human-computer interaction.
This study proposes an iterative feature boosting approach for SER that emphasizes feature relevance and explainability to enhance machine learning model performance.
The effectiveness of the proposed method is validated on the SER benchmarks of the Toronto emotional speech set (TESS), Berlin Database of Emotional Speech (EMO-DB), Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), and Surrey Audio-Visual Expressed Emotion (SAVEE) datasets.
arXiv Detail & Related papers (2024-06-01T00:39:55Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
We study representation learning in partially observable Markov Decision Processes (POMDPs)
We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU)
We then show how to adapt this algorithm to also work in the broader class of $gamma$-observable POMDPs.
arXiv Detail & Related papers (2023-06-21T16:04:03Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Comparing interpretability and explainability for feature selection [0.6015898117103068]
We investigate the performance of variable importance as a feature selection method across various black-box and interpretable machine learning methods.
The results show that regardless of whether we use the native variable importance method or SHAP, XGBoost fails to clearly distinguish between relevant and irrelevant features.
arXiv Detail & Related papers (2021-05-11T20:01:23Z) - Fantastic Features and Where to Find Them: Detecting Cognitive
Impairment with a Subsequence Classification Guided Approach [6.063165888023164]
We describe a new approach to feature engineering that leverages sequential machine learning models and domain knowledge to predict which features help enhance performance.
We demonstrate that CI classification accuracy improves by 2.3% over a strong baseline when using features produced by this method.
arXiv Detail & Related papers (2020-10-13T17:57:18Z) - Optimizing Speech Emotion Recognition using Manta-Ray Based Feature
Selection [1.4502611532302039]
We show that concatenation of features, extracted by using different existing feature extraction methods can boost the classification accuracy.
We also perform a novel application of Manta Ray optimization in speech emotion recognition tasks that resulted in a state-of-the-art result.
arXiv Detail & Related papers (2020-09-18T16:09:34Z) - Feature Learning for Accelerometer based Gait Recognition [0.0]
Autoencoders are very close to discriminative end-to-end models with regards to their feature learning ability.
fully convolutional models are able to learn good feature representations, regardless of the training strategy.
arXiv Detail & Related papers (2020-07-31T10:58:01Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
We introduce a generic Inference-aware Feature Filtering (IFF) module that can easily be combined with modern detectors.
IFF performs closed-loop optimization by leveraging high-level semantics to enhance the convolutional features.
IFF can be fused with CNN-based object detectors in a plug-and-play manner with negligible computational cost overhead.
arXiv Detail & Related papers (2020-06-23T02:57:29Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.