Decoherence-free many-body Hamiltonians in nonlinear waveguide quantum electrodynamics
- URL: http://arxiv.org/abs/2405.20241v1
- Date: Thu, 30 May 2024 16:45:32 GMT
- Title: Decoherence-free many-body Hamiltonians in nonlinear waveguide quantum electrodynamics
- Authors: Aviv Karnieli, Offek Tziperman, Charles Roques-Carmes, Shanhui Fan,
- Abstract summary: Waveguide quantum electrodynamics hosts infinite-range interactions and decoherence-free subspaces of quantum emitters.
Here we show that by incorporating emitter arrays with nonlinear waveguides hosting parametric gain, we obtain a unique class of many-body interaction Hamiltonians.
We propose to use these Hamiltonians to coherently generate decoherence-free states directly from the ground state, using only global squeezing drives.
- Score: 0.1874930567916036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enhancing interactions in many-body quantum systems, while protecting them from environmental decoherence, is at the heart of many quantum technologies. Waveguide quantum electrodynamics is a promising platform for achieving this, as it hosts infinite-range interactions and decoherence-free subspaces of quantum emitters. However, as coherent interactions between emitters are typically washed out in the wavelength-spacing regime hosting decoherence-free states, coherent control over the latter becomes limited, and many-body Hamiltonians in this important regime remain out of reach. Here we show that by incorporating emitter arrays with nonlinear waveguides hosting parametric gain, we obtain a unique class of many-body interaction Hamiltonians with coupling strengths that increase with emitter spacing, and persist even for wavelength-spaced arrays. We then propose to use these Hamiltonians to coherently generate decoherence-free states directly from the ground state, using only global squeezing drives, without the need for local addressing of individual emitters. Interestingly, we find that the dynamics approaches a unitary evolution in the limit of weak intra-waveguide squeezing, and discuss potential experimental realizations of this effect. Our results pave the way towards coherent control protocols in waveguide quantum electrodynamics, with applications including quantum computing, simulation, memory and nonclassical light generation.
Related papers
- Tunable Non-Gaussian Mechanical States in a Strongly Coupled Hybrid Quantum System [0.0]
We investigate the generation and control of non-Gaussian motional states in a tripartite hybrid quantum system.<n>We show that this drive protocol, combined with time-independent interaction and frequency configurations, leads to the emergence of highly non-Gaussian quantum states.<n>Our findings underscore the tunability and richness of this hybrid platform, paving the way for advanced quantum state engineering.
arXiv Detail & Related papers (2025-07-24T16:45:54Z) - From Bound States to Quantum Spin Models: Chiral Coherent Dynamics in Topological Photonic Rings [0.0]
Topological photonic systems offer a robust platform for guiding light in the presence of disorder, but their interplay with quantum emitters remains a frontier for realizing strongly correlated quantum states.<n>Here, we explore a ring-shaped Su-Schrieffer-Heeger (SSH) photonic lattice interfaced with multiple quantum emitters to control topologically protected chiral quantum dynamics.<n>We show that topological bound states enable unidirectional emission, protect coherence against dissipation, and imprint nontrivial entanglement and mutual information patterns among the emitters.
arXiv Detail & Related papers (2025-07-15T12:48:22Z) - Programmable non-Hermitian photonic quantum walks via dichroic metasurfaces [0.0]
We introduce a photonic platform that implements non-unitary quantum walks.
Non-unitary quantum walks are commonly used to emulate open-system dynamics.
Our platform broadens the range of optical simulators for controlled investigations of non-Hermitian quantum dynamics.
arXiv Detail & Related papers (2025-03-07T01:32:15Z) - Generating arbitrary superpositions of nonclassical quantum harmonic oscillator states [0.0]
We create arbitrary superpositions of nonclassical and non-Gaussian states of a quantum harmonic oscillator using the motion of a trapped ion coupled to its internal spin states.
We observe the nonclassical nature of these states in the form of Wigner negativity following a full state reconstruction.
arXiv Detail & Related papers (2024-09-05T12:45:57Z) - Subwavelength arrays of quantum emitters: nonlinearities enter the weak-drive regime, and lead to correlated subradiant states [0.0]
Quantum emitter arrays have emerged as important platforms in which strong light-matter interactions can be achieved and precisely controlled.<n>In subwavelength regimes, they are characterised by a manifold of subradiant eigenstates, which can host novel quantum many-body states.<n>The weak-drive regime has been widely regarded as a linear regime, well described by classical equations.<n>We show that higher-order, resonant and momentum-conserving processes exciting subradiant states lead to a steady state of interacting subradiant excitation pairs.
arXiv Detail & Related papers (2024-09-02T17:31:10Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Exact solution for the collective non-Markovian decay of two fully excited quantum emitters [0.0]
We analyze a collective non-Markovian decay in a minimal system of two excited emitters coupled to a one-dimensional waveguide.
Our methods shed light on the complexity of collective light-matter interactions and open up a pathway for understanding multiparticle open quantum systems.
arXiv Detail & Related papers (2024-03-20T14:54:45Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Unconventional Quantum Electrodynamics with Hofstadter-Ladder Waveguide [5.693517450178467]
We propose a novel quantum electrodynamics (QED) platform where quantum emitters interact with a Hofstadter-ladder waveguide.
By assuming emitter's frequency to be resonant with the lower band, we find that the spontaneous emission is chiral.
Due to quantum interference, we find that both the emitter-waveguide interaction and the amplitudes of bound states are periodically modulated by giant emitter's size.
arXiv Detail & Related papers (2022-03-21T07:07:26Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.