Tunable Non-Gaussian Mechanical States in a Strongly Coupled Hybrid Quantum System
- URL: http://arxiv.org/abs/2507.18571v1
- Date: Thu, 24 Jul 2025 16:45:54 GMT
- Title: Tunable Non-Gaussian Mechanical States in a Strongly Coupled Hybrid Quantum System
- Authors: Jugal Talukdar, Scott E. Smart, Prineha Narang,
- Abstract summary: We investigate the generation and control of non-Gaussian motional states in a tripartite hybrid quantum system.<n>We show that this drive protocol, combined with time-independent interaction and frequency configurations, leads to the emergence of highly non-Gaussian quantum states.<n>Our findings underscore the tunability and richness of this hybrid platform, paving the way for advanced quantum state engineering.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum states of motion are critical components in the second quantum revolution. We investigate the generation and control of non-Gaussian motional states in a tripartite hybrid quantum system consisting of a collection of qubits coupled to a mechanical resonator, which in turn interacts with an externally driven photonic cavity. This hybrid architecture provides a versatile platform for quantum control by integrating nonlinear interactions and multiple control parameters. Operating in the strong coupling regime, we study the transient dynamics resulting from a time-dependent external drive that has a boxcar profile. Starting from coherent states in both the mechanical and cavity subsystems, we show that this drive protocol, combined with time-independent interaction and frequency configurations, leads to the emergence of highly non-Gaussian quantum states in the intermediary mechanical degree of freedom. These states are characterized by a pronounced negative volume in the Wigner quasi-probability distribution and enhanced quantum Fisher information, indicative of their quantum utility. We systematically analyze the impact of the qubit phase, interaction strengths, and drive parameters on the degree of non-Gaussianity. Our findings underscore the tunability and richness of this hybrid platform, paving the way for advanced quantum state engineering and applications in quantum sensing, metrology, and information processing.
Related papers
- Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Verifying quantum information scrambling dynamics in a fully
controllable superconducting quantum simulator [0.0]
We study the verified scrambling in a 1D spin chain by an analogue superconducting quantum simulator with the signs and values of individual driving and coupling terms fully controllable.
Our work demonstrates the superconducting system as a powerful quantum simulator.
arXiv Detail & Related papers (2021-12-21T13:41:47Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Two-mode Schr\"odinger-cat states with nonlinear optomechanics:
generation and verification of non-Gaussian mechanical entanglement [0.0]
We introduce a pulsed approach that utilizes the nonlinearity of the radiation-pressure interaction combined with photon-counting measurements.
We describe a protocol using subsequent pulsed interactions to verify the non-Gaussian entanglement generated.
Our scheme offers significant potential for further research and development that utilizes such non-Gaussian states for quantum-information and sensing applications.
arXiv Detail & Related papers (2021-09-17T12:58:52Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Entanglement between Distant Macroscopic Mechanical and Spin Systems [0.0]
Entanglement is a vital property of multipartite quantum systems.
Generation of entanglement between macroscopic and disparate systems is an ongoing effort in quantum science.
arXiv Detail & Related papers (2020-03-25T10:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.