論文の概要: Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable
- arxiv url: http://arxiv.org/abs/2405.20272v1
- Date: Thu, 30 May 2024 17:27:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 13:09:46.981140
- Title: Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable
- Title(参考訳): マシン・アンラーニングにおけるリコンストラクション・アタック
- Authors: Martin Bertran, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu,
- Abstract要約: 線形回帰モデルから削除したデータポイントに対して、ほぼ完璧な攻撃をマウントする方法を示す。
我々の研究は、個人がモデルからデータの削除を要求できる非常に単純なモデルクラスであっても、プライバシリスクが重要であることを強調している。
- 参考スコア(独自算出の注目度): 30.22146634953896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning is motivated by desire for data autonomy: a person can request to have their data's influence removed from deployed models, and those models should be updated as if they were retrained without the person's data. We show that, counter-intuitively, these updates expose individuals to high-accuracy reconstruction attacks which allow the attacker to recover their data in its entirety, even when the original models are so simple that privacy risk might not otherwise have been a concern. We show how to mount a near-perfect attack on the deleted data point from linear regression models. We then generalize our attack to other loss functions and architectures, and empirically demonstrate the effectiveness of our attacks across a wide range of datasets (capturing both tabular and image data). Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.
- Abstract(参考訳): マシン・アンラーニングは、データの自律性への欲求によって動機付けられている: デプロイされたモデルからデータの影響を除去するよう要求することができ、それらのモデルは、データなしで再トレーニングされたかのように更新されるべきである。
これらのアップデートは個人を高い精度で復元攻撃に晒し、攻撃者は元のモデルがあまりにシンプルでプライバシーのリスクが心配されていなかったとしても、その全体を通してデータを復元できることを示した。
線形回帰モデルから削除したデータポイントに対して、ほぼ完璧な攻撃をマウントする方法を示す。
次に、他の損失関数やアーキテクチャに対する攻撃を一般化し、広範囲のデータセット(表と画像の両方をキャプチャする)にわたる攻撃の有効性を実証的に実証します。
我々の研究は、個人がモデルからデータの削除を要求できる非常に単純なモデルクラスであっても、プライバシリスクが重要であることを強調している。
関連論文リスト
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Beyond Labeling Oracles: What does it mean to steal ML models? [52.63413852460003]
モデル抽出攻撃は、クエリアクセスのみで訓練されたモデルを盗むように設計されている。
モデル抽出攻撃の成功に影響を及ぼす要因について検討する。
我々は,ME攻撃の敵の目標を再定義するようコミュニティに促した。
論文 参考訳(メタデータ) (2023-10-03T11:10:21Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
ブラックボックス設定において、より高い攻撃精度を達成できる学習ベースモデル反転攻撃のための新しい訓練パラダイムを提案する。
まず,攻撃モデルの学習過程を,意味的損失関数を追加して規則化する。
第2に、学習データに逆例を注入し、クラス関連部の多様性を高める。
論文 参考訳(メタデータ) (2023-06-24T13:40:58Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Reconstructing Training Data with Informed Adversaries [30.138217209991826]
機械学習モデルへのアクセスを考えると、敵はモデルのトレーニングデータを再構築できるだろうか?
本研究は、この疑問を、学習データポイントの全てを知っている強力な情報提供者のレンズから研究する。
この厳密な脅威モデルにおいて、残りのデータポイントを再構築することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-13T09:19:25Z) - Machine unlearning via GAN [2.406359246841227]
機械学習モデル、特にディープラーニングモデルは、トレーニングデータに関する情報を意図せずに記憶することができる。
本稿では,深層モデルにおけるデータ削除のためのGANアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-22T05:28:57Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - Manipulating SGD with Data Ordering Attacks [23.639512087220137]
基礎となるモデルデータセットやアーキテクチャを変更する必要のない,一連のトレーニングタイムアタックを提示する。
特に、アタッカーはトレーニングバッチをリオーダーするだけでモデルの完全性と可用性を損なう可能性がある。
攻撃は、攻撃後数百エポックというモデル性能を低下させるという長期的な影響をもたらす。
論文 参考訳(メタデータ) (2021-04-19T22:17:27Z) - Amnesiac Machine Learning [15.680008735220785]
最近制定された一般データ保護規則は、欧州連合の居住者に関するデータを持つデータ保有者に影響を与えている。
モデルは、モデル反転攻撃のような情報漏洩攻撃に対して脆弱である。
我々は、モデル所有者が規制に準拠しながら、そのような攻撃から身を守ることのできる、UnlearningとAmnesiac Unlearningの2つのデータ除去方法を提案する。
論文 参考訳(メタデータ) (2020-10-21T13:14:17Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。