Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable
- URL: http://arxiv.org/abs/2405.20272v1
- Date: Thu, 30 May 2024 17:27:44 GMT
- Title: Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable
- Authors: Martin Bertran, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu,
- Abstract summary: We show how to mount a near-perfect attack on the deleted data point from linear regression models.
Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.
- Score: 30.22146634953896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning is motivated by desire for data autonomy: a person can request to have their data's influence removed from deployed models, and those models should be updated as if they were retrained without the person's data. We show that, counter-intuitively, these updates expose individuals to high-accuracy reconstruction attacks which allow the attacker to recover their data in its entirety, even when the original models are so simple that privacy risk might not otherwise have been a concern. We show how to mount a near-perfect attack on the deleted data point from linear regression models. We then generalize our attack to other loss functions and architectures, and empirically demonstrate the effectiveness of our attacks across a wide range of datasets (capturing both tabular and image data). Our work highlights that privacy risk is significant even for extremely simple model classes when individuals can request deletion of their data from the model.
Related papers
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Beyond Labeling Oracles: What does it mean to steal ML models? [52.63413852460003]
Model extraction attacks are designed to steal trained models with only query access.
We investigate factors influencing the success of model extraction attacks.
Our findings urge the community to redefine the adversarial goals of ME attacks.
arXiv Detail & Related papers (2023-10-03T11:10:21Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
We propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting.
First, we regularize the training process of the attack model with an added semantic loss function.
Second, we inject adversarial examples into the training data to increase the diversity of the class-related parts.
arXiv Detail & Related papers (2023-06-24T13:40:58Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Reconstructing Training Data with Informed Adversaries [30.138217209991826]
Given access to a machine learning model, can an adversary reconstruct the model's training data?
This work studies this question from the lens of a powerful informed adversary who knows all the training data points except one.
We show it is feasible to reconstruct the remaining data point in this stringent threat model.
arXiv Detail & Related papers (2022-01-13T09:19:25Z) - Machine unlearning via GAN [2.406359246841227]
Machine learning models, especially deep models, may unintentionally remember information about their training data.
We present a GAN-based algorithm to delete data in deep models, which significantly improves deleting speed compared to retraining from scratch.
arXiv Detail & Related papers (2021-11-22T05:28:57Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Manipulating SGD with Data Ordering Attacks [23.639512087220137]
We present a class of training-time attacks that require no changes to the underlying model dataset or architecture.
In particular, an attacker can disrupt the integrity and availability of a model by simply reordering training batches.
Attacks have a long-term impact in that they decrease model performance hundreds of epochs after the attack took place.
arXiv Detail & Related papers (2021-04-19T22:17:27Z) - Amnesiac Machine Learning [15.680008735220785]
Recently enacted General Data Protection Regulation affects any data holder that has data on European Union residents.
Models are vulnerable to information leaking attacks such as model inversion attacks.
We present two data removal methods, namely Unlearning and Amnesiac Unlearning, that enable model owners to protect themselves against such attacks while being compliant with regulations.
arXiv Detail & Related papers (2020-10-21T13:14:17Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.