GECO: Generative Image-to-3D within a SECOnd
- URL: http://arxiv.org/abs/2405.20327v2
- Date: Tue, 20 Aug 2024 03:54:10 GMT
- Title: GECO: Generative Image-to-3D within a SECOnd
- Authors: Chen Wang, Jiatao Gu, Xiaoxiao Long, Yuan Liu, Lingjie Liu,
- Abstract summary: We introduce GECO, a novel method for high-quality 3D generative modeling that operates within a second.
GECO achieves high-quality image-to-3D mesh generation with an unprecedented level of efficiency.
- Score: 51.20830808525894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have seen significant advancements in 3D generation. While methods like score distillation achieve impressive results, they often require extensive per-scene optimization, which limits their time efficiency. On the other hand, reconstruction-based approaches are more efficient but tend to compromise quality due to their limited ability to handle uncertainty. We introduce GECO, a novel method for high-quality 3D generative modeling that operates within a second. Our approach addresses the prevalent issues of uncertainty and inefficiency in existing methods through a two-stage approach. In the first stage, we train a single-step multi-view generative model with score distillation. Then, a second-stage distillation is applied to address the challenge of view inconsistency in the multi-view generation. This two-stage process ensures a balanced approach to 3D generation, optimizing both quality and efficiency. Our comprehensive experiments demonstrate that GECO achieves high-quality image-to-3D mesh generation with an unprecedented level of efficiency. We will make the code and model publicly available.
Related papers
- ControLRM: Fast and Controllable 3D Generation via Large Reconstruction Model [36.34976357766257]
We introduce ControLRM, an end-to-end feed-forward model designed for rapid and controllable 3D generation.
ControLRM comprises a 2D condition generator, a condition encoding transformer, and a triplane decoder transformer.
In the condition training branch, we lock the triplane decoder and reuses the deep and robust encoding layers pretrained with millions of 3D data in LRM.
In the image training branch, we unlock the triplane decoder to establish an implicit alignment between the 2D and 3D representations.
arXiv Detail & Related papers (2024-10-12T16:47:20Z) - MVGaussian: High-Fidelity text-to-3D Content Generation with Multi-View Guidance and Surface Densification [13.872254142378772]
This paper introduces a unified framework for text-to-3D content generation.
Our approach utilizes multi-view guidance to iteratively form the structure of the 3D model.
We also introduce a novel densification algorithm that aligns gaussians close to the surface.
arXiv Detail & Related papers (2024-09-10T16:16:34Z) - VividDreamer: Towards High-Fidelity and Efficient Text-to-3D Generation [69.68568248073747]
We propose Pose-dependent Consistency Distillation Sampling (PCDS), a novel yet efficient objective for diffusion-based 3D generation tasks.
PCDS builds the pose-dependent consistency function within diffusion trajectories, allowing to approximate true gradients through minimal sampling steps.
For efficient generation, we propose a coarse-to-fine optimization strategy, which first utilizes 1-step PCDS to create the basic structure of 3D objects, and then gradually increases PCDS steps to generate fine-grained details.
arXiv Detail & Related papers (2024-06-21T08:21:52Z) - MVHuman: Tailoring 2D Diffusion with Multi-view Sampling For Realistic
3D Human Generation [45.88714821939144]
We present an alternative scheme named MVHuman to generate human radiance fields from text guidance.
Our core is a multi-view sampling strategy to tailor the denoising processes of the pre-trained network for generating consistent multi-view images.
arXiv Detail & Related papers (2023-12-15T11:56:26Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3D is a novel method for efficiently generating high-fidelity textured meshes from single-view images.
To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model.
arXiv Detail & Related papers (2023-10-23T15:02:23Z) - HiFi-123: Towards High-fidelity One Image to 3D Content Generation [64.81863143986384]
HiFi-123 is a method designed for high-fidelity and multi-view consistent 3D generation.
We present a Reference-Guided Novel View Enhancement (RGNV) technique that significantly improves the fidelity of diffusion-based zero-shot novel view synthesis methods.
We also present a novel Reference-Guided State Distillation (RGSD) loss.
arXiv Detail & Related papers (2023-10-10T16:14:20Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
We propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously.
Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.
In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.
arXiv Detail & Related papers (2023-09-28T17:55:05Z) - Efficient Geometry-aware 3D Generative Adversarial Networks [50.68436093869381]
Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent.
In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations.
We introduce an expressive hybrid explicit-implicit network architecture that synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
arXiv Detail & Related papers (2021-12-15T08:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.