Acc3D: Accelerating Single Image to 3D Diffusion Models via Edge Consistency Guided Score Distillation
- URL: http://arxiv.org/abs/2503.15975v1
- Date: Thu, 20 Mar 2025 09:18:10 GMT
- Title: Acc3D: Accelerating Single Image to 3D Diffusion Models via Edge Consistency Guided Score Distillation
- Authors: Kendong Liu, Zhiyu Zhu, Hui Liu, Junhui Hou,
- Abstract summary: We present Acc3D to tackle the challenge of accelerating the diffusion process to generate 3D models from single images.<n>To derive high-quality reconstructions through few-step inferences, we emphasize the critical issue of regularizing the learning of score function in states of random noise.
- Score: 49.202383675543466
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Acc3D to tackle the challenge of accelerating the diffusion process to generate 3D models from single images. To derive high-quality reconstructions through few-step inferences, we emphasize the critical issue of regularizing the learning of score function in states of random noise. To this end, we propose edge consistency, i.e., consistent predictions across the high signal-to-noise ratio region, to enhance a pre-trained diffusion model, enabling a distillation-based refinement of the endpoint score function. Building on those distilled diffusion models, we propose an adversarial augmentation strategy to further enrich the generation detail and boost overall generation quality. The two modules complement each other, mutually reinforcing to elevate generative performance. Extensive experiments demonstrate that our Acc3D not only achieves over a $20\times$ increase in computational efficiency but also yields notable quality improvements, compared to the state-of-the-arts.
Related papers
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - Accelerating Video Diffusion Models via Distribution Matching [26.475459912686986]
This work introduces a novel framework for diffusion distillation and distribution matching.<n>Our approach focuses on distilling pre-trained diffusion models into a more efficient few-step generator.<n>By leveraging a combination of video GAN loss and a novel 2D score distribution matching loss, we demonstrate the potential to generate high-quality video frames.
arXiv Detail & Related papers (2024-12-08T11:36:32Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation [18.371344440413353]
We propose a novel distillation framework tailored to enable high-fidelity, diverse sample generation using just one to three steps.
Our approach comprises three key components: (i) Backward Distillation, which mitigates training-inference discrepancies by calibrating the student on its own backward trajectory; (ii) Shifted Reconstruction Loss that dynamically adapts knowledge transfer based on the current time step; and (iii) Noise Correction, an inference-time technique that enhances sample quality.
arXiv Detail & Related papers (2024-05-08T17:15:18Z) - Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation [24.236841051249243]
Distillation methods aim to shift the model from many-shot to single-step inference.
We introduce Latent Adversarial Diffusion Distillation (LADD), a novel distillation approach overcoming the limitations of ADD.
In contrast to pixel-based ADD, LADD utilizes generative features from pretrained latent diffusion models.
arXiv Detail & Related papers (2024-03-18T17:51:43Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
We propose a unified framework aimed at enhancing the diffusion priors for 3D generation tasks.
We identify a divergence between the diffusion priors and the training procedures of diffusion models that substantially impairs the quality of 3D generation.
arXiv Detail & Related papers (2023-12-08T03:55:34Z) - DiffHPE: Robust, Coherent 3D Human Pose Lifting with Diffusion [54.0238087499699]
We show that diffusion models enhance the accuracy, robustness, and coherence of human pose estimations.
We introduce DiffHPE, a novel strategy for harnessing diffusion models in 3D-HPE.
Our findings indicate that while standalone diffusion models provide commendable performance, their accuracy is even better in combination with supervised models.
arXiv Detail & Related papers (2023-09-04T12:54:10Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.