論文の概要: SurgiTrack: Fine-Grained Multi-Class Multi-Tool Tracking in Surgical Videos
- arxiv url: http://arxiv.org/abs/2405.20333v2
- Date: Sun, 08 Dec 2024 23:30:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:49:14.696686
- Title: SurgiTrack: Fine-Grained Multi-Class Multi-Tool Tracking in Surgical Videos
- Title(参考訳): SurgiTrack:手術用ビデオのマルチツール・マルチツール・トラッキング
- Authors: Chinedu Innocent Nwoye, Nicolas Padoy,
- Abstract要約: この研究は、外科的ツールトラッキングの新しい標準を設定し、最小侵襲の手術に対してより適応的で正確な支援を行うためのダイナミックな軌跡を提供する。
本稿では,ツール検出にYOLOv7を活用する新しいディープラーニング手法であるSurgiTrackを提案する。
- 参考スコア(独自算出の注目度): 2.3810490830445183
- License:
- Abstract: Accurate tool tracking is essential for the success of computer-assisted intervention. Previous efforts often modeled tool trajectories rigidly, overlooking the dynamic nature of surgical procedures, especially tracking scenarios like out-of-body and out-of-camera views. Addressing this limitation, the new CholecTrack20 dataset provides detailed labels that account for multiple tool trajectories in three perspectives: (1) intraoperative, (2) intracorporeal, and (3) visibility, representing the different types of temporal duration of tool tracks. These fine-grained labels enhance tracking flexibility but also increase the task complexity. Re-identifying tools after occlusion or re-insertion into the body remains challenging due to high visual similarity, especially among tools of the same category. This work recognizes the critical role of the tool operators in distinguishing tool track instances, especially those belonging to the same tool category. The operators' information are however not explicitly captured in surgical videos. We therefore propose SurgiTrack, a novel deep learning method that leverages YOLOv7 for precise tool detection and employs an attention mechanism to model the originating direction of the tools, as a proxy to their operators, for tool re-identification. To handle diverse tool trajectory perspectives, SurgiTrack employs a harmonizing bipartite matching graph, minimizing conflicts and ensuring accurate tool identity association. Experimental results on CholecTrack20 demonstrate SurgiTrack's effectiveness, outperforming baselines and state-of-the-art methods with real-time inference capability. This work sets a new standard in surgical tool tracking, providing dynamic trajectories for more adaptable and precise assistance in minimally invasive surgeries.
- Abstract(参考訳): コンピュータによる介入の成功には,正確なツールトラッキングが不可欠である。
それまでの努力は、外科手術のダイナミックな性質、特に外眼視や外眼視といったシナリオの追跡を見越して、厳格にツールトラジェクトリをモデル化していた。
この制限に対処するため、新しいColecTrack20データセットは、(1)術中、(2)体内、(3)視認性の3つの視点で、ツールトラックの時間的な異なるタイプを表す、複数のツールトラジェクトリを記述した詳細なラベルを提供する。
これらのきめ細かいラベルは、トラッキングの柔軟性を高めるだけでなく、タスクの複雑さも増す。
咬合や再挿入後の道具の再識別は、視覚的類似性が高いため、特に同じカテゴリーの道具では困難である。
この研究は、ツールトラックインスタンス、特に同じツールカテゴリに属するインスタンスを区別する上で、ツールオペレーターが果たす重要な役割を認識します。
しかし、オペレーターの情報は外科的ビデオでははっきりとは捉えられていない。
そこで我々は,ツール検出にYOLOv7を活用する新しいディープラーニング手法であるSurgiTrackを提案する。
多様なツール・トラジェクトリ・パースペクティブを扱うために、SurgiTrackは調和した二部マッチング・グラフを採用し、競合を最小限に抑え、正確なツール・アイデンティティ・アソシエーションを保証する。
CholecTrack20の実験結果は、SurgiTrackの有効性、ベースラインの向上、およびリアルタイム推論機能を備えた最先端メソッドを実証している。
この研究は、外科的ツールトラッキングの新しい標準を設定し、最小侵襲の手術に対してより適応的で正確な支援を行うためのダイナミックな軌跡を提供する。
関連論文リスト
- FeatureSORT: Essential Features for Effective Tracking [0.0]
本稿では,オンライン複数オブジェクト追跡のための新しいトラッカーについて紹介する。
衣料品の色やスタイル,対象方向など,異なる外観特徴を統合することで,オンライントラッキングの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-05T04:37:39Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - CholecTrack20: A Dataset for Multi-Class Multiple Tool Tracking in
Laparoscopic Surgery [1.8076340162131013]
CholecTrack20は,3つの視点にわたるマルチクラスマルチツールトラッキングのための,綿密な注釈付きデータセットである。
データセットは、20の腹腔鏡ビデオと35,000のフレーム、65,000のアノテーション付きツールインスタンスで構成されている。
論文 参考訳(メタデータ) (2023-12-12T15:18:15Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - SAF-IS: a Spatial Annotation Free Framework for Instance Segmentation of
Surgical Tools [10.295921059528636]
トレーニングに空間アノテーションを頼らずに,実例分割のためのフレームワークを開発する。
我々のソリューションはバイナリツールマスクのみを必要とし、最新の教師なしアプローチとバイナリツール存在ラベルを使って取得できる。
当社のフレームワークは、2017年と2018年のセグメンテーションデータセット上で検証しています。
論文 参考訳(メタデータ) (2023-09-04T17:13:06Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
SurgLoc 2022 チャレンジの結果を示す。
目標は、ツール検出のためにトレーニングされた機械学習モデルにおいて、ツールの存在データを弱いラベルとして活用することだった。
これらの結果を機械学習と手術データ科学の幅広い文脈で論じることで結論付ける。
論文 参考訳(メタデータ) (2023-05-11T21:44:39Z) - Online Deep Clustering with Video Track Consistency [85.8868194550978]
ビデオオブジェクトトラックから視覚的特徴を学習するための教師なしクラスタリングに基づく手法を提案する。
教師なしのクラス非依存でノイズの多いトラックジェネレータを利用すれば、コストと正確なトラックアノテーションに依存するよりも精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-07T08:11:00Z) - Correlation-Aware Deep Tracking [83.51092789908677]
本稿では,自己/横断的意図に着想を得た,新たなターゲット依存型特徴ネットワークを提案する。
我々のネットワークは機能ネットワークの複数の層にクロスイメージの特徴相関を深く埋め込んでいる。
我々のモデルは、豊富な未ペア画像に対して柔軟に事前訓練が可能であり、既存の手法よりも顕著に高速な収束をもたらす。
論文 参考訳(メタデータ) (2022-03-03T11:53:54Z) - Crop-Transform-Paste: Self-Supervised Learning for Visual Tracking [137.26381337333552]
本研究では,十分なトレーニングデータを合成できるCrop-Transform-Paste演算を開発した。
オブジェクトの状態はすべての合成データで知られているので、既存のディープトラッカーは人間のアノテーションなしで日常的に訓練することができる。
論文 参考訳(メタデータ) (2021-06-21T07:40:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。