Imitating from auxiliary imperfect demonstrations via Adversarial Density Weighted Regression
- URL: http://arxiv.org/abs/2405.20351v3
- Date: Mon, 13 Jan 2025 12:27:56 GMT
- Title: Imitating from auxiliary imperfect demonstrations via Adversarial Density Weighted Regression
- Authors: Ziqi Zhang, Zifeng Zhuang, Jingzehua Xu, Yiyuan Yang, Yubo Huang, Donglin Wang, Shuai Zhang,
- Abstract summary: We propose a novel one-step supervised imitation learning framework called Adversarial Density Regression.
It aims to correct the policy learned on unknown-quality to match the expert distribution by utilizing demonstrations.
It achieves an 89.5% improvement over IQL when utilizing ground truth rewards on tasks from the Adroit and Kitchen domains.
- Score: 27.08369731750032
- License:
- Abstract: We propose a novel one-step supervised imitation learning (IL) framework called Adversarial Density Regression (ADR). This IL framework aims to correct the policy learned on unknown-quality to match the expert distribution by utilizing demonstrations, without relying on the Bellman operator. Specifically, ADR addresses several limitations in previous IL algorithms: First, most IL algorithms are based on the Bellman operator, which inevitably suffer from cumulative offsets from sub-optimal rewards during multi-step update processes. Additionally, off-policy training frameworks suffer from Out-of-Distribution (OOD) state-actions. Second, while conservative terms help solve the OOD issue, balancing the conservative term is difficult. To address these limitations, we fully integrate a one-step density-weighted Behavioral Cloning (BC) objective for IL with auxiliary imperfect demonstration. Theoretically, we demonstrate that this adaptation can effectively correct the distribution of policies trained on unknown-quality datasets to align with the expert policy's distribution. Moreover, the difference between the empirical and the optimal value function is proportional to the upper bound of ADR's objective, indicating that minimizing ADR's objective is akin to approaching the optimal value. Experimentally, we validated the performance of ADR by conducting extensive evaluations. Specifically, ADR outperforms all of the selected IL algorithms on tasks from the Gym-Mujoco domain. Meanwhile, it achieves an 89.5% improvement over IQL when utilizing ground truth rewards on tasks from the Adroit and Kitchen domains. Our codebase will be released at: https://github.com/stevezhangzA/Adverserial_Density_Regression.
Related papers
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Adaptive Advantage-Guided Policy Regularization for Offline Reinforcement Learning [12.112619241073158]
In offline reinforcement learning, the challenge of out-of-distribution is pronounced.
Existing methods often constrain the learned policy through policy regularization.
We propose Adaptive Advantage-guided Policy Regularization (A2PR)
arXiv Detail & Related papers (2024-05-30T10:20:55Z) - Anti-Exploration by Random Network Distillation [63.04360288089277]
We show that a naive choice of conditioning for the Random Network Distillation (RND) is not discriminative enough to be used as an uncertainty estimator.
We show that this limitation can be avoided with conditioning based on Feature-wise Linear Modulation (FiLM)
We evaluate it on the D4RL benchmark, showing that it is capable of achieving performance comparable to ensemble-based methods and outperforming ensemble-free approaches by a wide margin.
arXiv Detail & Related papers (2023-01-31T13:18:33Z) - STEEL: Singularity-aware Reinforcement Learning [14.424199399139804]
Batch reinforcement learning (RL) aims at leveraging pre-collected data to find an optimal policy.
We propose a new batch RL algorithm that allows for singularity for both state and action spaces.
By leveraging the idea of pessimism and under some technical conditions, we derive a first finite-sample regret guarantee for our proposed algorithm.
arXiv Detail & Related papers (2023-01-30T18:29:35Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Where is the Grass Greener? Revisiting Generalized Policy Iteration for
Offline Reinforcement Learning [81.15016852963676]
We re-implement state-of-the-art baselines in the offline RL regime under a fair, unified, and highly factorized framework.
We show that when a given baseline outperforms its competing counterparts on one end of the spectrum, it never does on the other end.
arXiv Detail & Related papers (2021-07-03T11:00:56Z) - Enhanced Doubly Robust Learning for Debiasing Post-click Conversion Rate
Estimation [29.27760413892272]
Post-click conversion, as a strong signal indicating the user preference, is salutary for building recommender systems.
Currently, most existing methods utilize counterfactual learning to debias recommender systems.
We propose a novel double learning approach for the MRDR estimator, which can convert the error imputation into the general CVR estimation.
arXiv Detail & Related papers (2021-05-28T06:59:49Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
We develop a doubly robust off-policy AC (DR-Off-PAC) for discounted MDP.
DR-Off-PAC adopts a single timescale structure, in which both actor and critics are updated simultaneously with constant stepsize.
We study the finite-time convergence rate and characterize the sample complexity for DR-Off-PAC to attain an $epsilon$-accurate optimal policy.
arXiv Detail & Related papers (2021-02-23T18:56:13Z) - Provably Good Batch Reinforcement Learning Without Great Exploration [51.51462608429621]
Batch reinforcement learning (RL) is important to apply RL algorithms to many high stakes tasks.
Recent algorithms have shown promise but can still be overly optimistic in their expected outcomes.
We show that a small modification to Bellman optimality and evaluation back-up to take a more conservative update can have much stronger guarantees.
arXiv Detail & Related papers (2020-07-16T09:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.