Offline Behavior Distillation
- URL: http://arxiv.org/abs/2410.22728v1
- Date: Wed, 30 Oct 2024 06:28:09 GMT
- Title: Offline Behavior Distillation
- Authors: Shiye Lei, Sen Zhang, Dacheng Tao,
- Abstract summary: Massive reinforcement learning (RL) data are typically collected to train policies offline without the need for interactions.
We formulate offline behavior distillation (OBD), which synthesizes limited expert behavioral data from sub-optimal RL data.
We propose two naive OBD objectives, DBC and PBC, which measure distillation performance via the decision difference between policies trained on distilled data and either offline data or a near-expert policy.
- Score: 57.6900189406964
- License:
- Abstract: Massive reinforcement learning (RL) data are typically collected to train policies offline without the need for interactions, but the large data volume can cause training inefficiencies. To tackle this issue, we formulate offline behavior distillation (OBD), which synthesizes limited expert behavioral data from sub-optimal RL data, enabling rapid policy learning. We propose two naive OBD objectives, DBC and PBC, which measure distillation performance via the decision difference between policies trained on distilled data and either offline data or a near-expert policy. Due to intractable bi-level optimization, the OBD objective is difficult to minimize to small values, which deteriorates PBC by its distillation performance guarantee with quadratic discount complexity $\mathcal{O}(1/(1-\gamma)^2)$. We theoretically establish the equivalence between the policy performance and action-value weighted decision difference, and introduce action-value weighted PBC (Av-PBC) as a more effective OBD objective. By optimizing the weighted decision difference, Av-PBC achieves a superior distillation guarantee with linear discount complexity $\mathcal{O}(1/(1-\gamma))$. Extensive experiments on multiple D4RL datasets reveal that Av-PBC offers significant improvements in OBD performance, fast distillation convergence speed, and robust cross-architecture/optimizer generalization.
Related papers
- Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - The Importance of Online Data: Understanding Preference Fine-tuning via Coverage [25.782644676250115]
We study the similarities and differences between online and offline techniques for preference fine-tuning.
We prove that a global coverage condition is both necessary and sufficient for offline contrastive methods to converge to the optimal policy.
We derive a hybrid preference optimization algorithm that uses offline data for contrastive-based preference optimization and online data for KL regularization.
arXiv Detail & Related papers (2024-06-03T15:51:04Z) - Importance Weighted Actor-Critic for Optimal Conservative Offline
Reinforcement Learning [23.222448307481073]
We propose a new practical algorithm for offline reinforcement learning (RL) in complex environments with insufficient data coverage.
Our algorithm combines the marginalized importance sampling framework with the actor-critic paradigm.
We provide both theoretical analysis and experimental results to validate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2023-01-30T07:53:53Z) - Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement
Learning [125.8224674893018]
Offline Reinforcement Learning (RL) aims to learn policies from previously collected datasets without exploring the environment.
Applying off-policy algorithms to offline RL usually fails due to the extrapolation error caused by the out-of-distribution (OOD) actions.
We propose Pessimistic Bootstrapping for offline RL (PBRL), a purely uncertainty-driven offline algorithm without explicit policy constraints.
arXiv Detail & Related papers (2022-02-23T15:27:16Z) - Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning [59.02006924867438]
Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions.
Recent work proposed distributionally robust OPE/L (DROPE/L) to remedy this, but the proposal relies on inverse-propensity weighting.
We propose the first DR algorithms for DROPE/L with KL-divergence uncertainty sets.
arXiv Detail & Related papers (2022-02-19T20:00:44Z) - Bridging Offline Reinforcement Learning and Imitation Learning: A Tale
of Pessimism [26.11003309805633]
offline reinforcement learning (RL) algorithms seek to learn an optimal policy from a fixed dataset without active data collection.
Based on the composition of the offline dataset, two main categories of methods are used: imitation learning and vanilla offline RL.
We present a new offline RL framework that smoothly interpolates between the two extremes of data composition.
arXiv Detail & Related papers (2021-03-22T17:27:08Z) - Continuous Doubly Constrained Batch Reinforcement Learning [93.23842221189658]
We propose an algorithm for batch RL, where effective policies are learned using only a fixed offline dataset instead of online interactions with the environment.
The limited data in batch RL produces inherent uncertainty in value estimates of states/actions that were insufficiently represented in the training data.
We propose to mitigate this issue via two straightforward penalties: a policy-constraint to reduce this divergence and a value-constraint that discourages overly optimistic estimates.
arXiv Detail & Related papers (2021-02-18T08:54:14Z) - Is Pessimism Provably Efficient for Offline RL? [104.00628430454479]
We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori.
We propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function.
arXiv Detail & Related papers (2020-12-30T09:06:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.