Fate of many-body localization in an Abelian lattice gauge theory
- URL: http://arxiv.org/abs/2405.20379v1
- Date: Thu, 30 May 2024 18:00:02 GMT
- Title: Fate of many-body localization in an Abelian lattice gauge theory
- Authors: Indrajit Sau, Debasish Banerjee, Arnab Sen,
- Abstract summary: We address fate of many-body localization of mid-spectrum eigenstates of matter-free $U(1)$ quantum-link gauge theory Hamiltonian with random couplings on ladder geometries.
$p(mathcalD)$ for $L_x times L_y$ lattices, with $L_y=2$ and $4$, as a function of (aless) disorder strength.
$p(mathcalD)$ for wider ladders with $L_y=4$ show their lower tendency to localize, suggesting a lack of MBL in two
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the fate of many-body localization (MBL) of mid-spectrum eigenstates of a matter-free $U(1)$ quantum-link gauge theory Hamiltonian with random couplings on ladder geometries. We specifically consider an intensive estimator, $\mathcal{D} \in [0,1/4]$, that acts as a measure of elementary plaquettes on the lattice being active or inert in mid-spectrum eigenstates as well as the concentration of these eigenstates in Fock space, with $\mathcal{D}$ being equal to its maximum value of $1/4$ for Fock states in the electric flux basis. We calculate its distribution, $p(\mathcal{D})$, for $L_x \times L_y$ lattices, with $L_y=2$ and $4$, as a function of (a dimensionless) disorder strength $\alpha$ ($\alpha=0$ implies zero disorder) using exact diagonalization on many disorder realizations. Analyzing the skewness of $p(\mathcal{D})$ shows that the finite-size estimate of the critical disorder strength, beyond which MBL sets in for thin ladders with $L_y=2$, increases linearly with $L_x$ while the behavior of the full distribution with increasing $L_x$ at fixed $\alpha$ shows that $\alpha_c (L_y=2) >40$, if at all finite, based on data for $L_x \leq 12$. $p(\mathcal{D})$ for wider ladders with $L_y=4$ show their lower tendency to localize, suggesting a lack of MBL in two dimensions. A remarkable observation is the resolution of the (monotonic) infinite temperature autocorrelation function of single plaquette diagonal operators in typical high-energy Fock states into a plethora of emergent timescales of increasing spatio-temporal heterogeneity as the disorder is increased even before MBL sets in. At intermediate and large $\alpha$, but below $\alpha_c (L_y)$, certain randomly selected initial Fock states display striking oscillatory temporal behavior of such plaquette operators dominated by only a few frequencies, reminiscent of oscillations induced by quantum many-body scars.
Related papers
- A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Weak universality, quantum many-body scars and anomalous
infinite-temperature autocorrelations in a one-dimensional spin model with
duality [0.0]
We study a one-dimensional spin-$1/2$ model with three-spin interactions and a transverse magnetic field $h$.
We compute the critical exponents $z$, $beta$, $gamma$ and $nu$, and the central charge $c$.
For a system with periodic boundary conditions, there are an exponentially large number of exact mid-spectrum zero-energy eigenstates.
arXiv Detail & Related papers (2023-07-20T18:00:05Z) - A Nearly Tight Bound for Fitting an Ellipsoid to Gaussian Random Points [50.90125395570797]
This nearly establishes a conjecture ofciteSaundersonCPW12, within logarithmic factors.
The latter conjecture has attracted significant attention over the past decade, due to its connections to machine learning and sum-of-squares lower bounds for certain statistical problems.
arXiv Detail & Related papers (2022-12-21T17:48:01Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Periodically driven Rydberg chains with staggered detuning [0.0]
We study the stroboscopic dynamics of a driven finite Rydberg chain with staggered ($Delta$) and time-dependent uniform ($lambda(t)$) detuning terms using exact diagonalization (ED)
We show that at intermediate drive ($omega_D$), the presence of a finite $Delta$ results in violation of the eigenstate thermalization hypothesis (ETH) via clustering of Floquet eigenstates.
The violation of ETH in these driven finite-sized chains is also evident from the dynamical freezing displayed by the density density correlation function at specific $omega_D
arXiv Detail & Related papers (2021-12-29T19:04:07Z) - Statistical properties of the localization measure of chaotic
eigenstates and the spectral statistics in a mixed-type billiard [0.0]
We study the quantum localization in the chaotic eigenstates of a billiard with mixed-type phase space.
We show that the level repulsion exponent $beta$ is empirically a rational function of $alpha$, and the mean $langle A rangle$ as a function of $alpha$ is also well approximated by a rational function.
arXiv Detail & Related papers (2021-04-23T15:33:26Z) - Analytic Characterization of the Hessian in Shallow ReLU Models: A Tale
of Symmetry [9.695960412426672]
We analytically characterize the Hessian at various families of spurious minima.
In particular, we prove that for $dge k$ standard Gaussian inputs: (a) of the $dk$ eigenvalues of the Hessian, $dk - O(d)$ concentrate near zero, (b) $Omega(d)$ of the eigenvalues grow linearly with $k$.
arXiv Detail & Related papers (2020-08-04T20:08:35Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.