論文の概要: Back to the Basics on Predicting Transfer Performance
- arxiv url: http://arxiv.org/abs/2405.20420v1
- Date: Thu, 30 May 2024 18:55:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 18:24:43.305527
- Title: Back to the Basics on Predicting Transfer Performance
- Title(参考訳): 伝達性能予測の基礎
- Authors: Levy Chaves, Eduardo Valle, Alceu Bissoto, Sandra Avila,
- Abstract要約: 本稿では、転送可能性スコアリングのためのロバストなベンチマークガイドラインと、複数のスコアリングを組み合わせるためのしっかりとした手法を提案する。
総括的,微粒化,医用画像的データセットを含む11データセットの文献から13スコアを広範囲に評価した。
この結果から,異なる情報ソースを組み合わせることで,様々な領域間での転送可能性の確実な予測が可能となる可能性が示唆された。
- 参考スコア(独自算出の注目度): 14.513595260159033
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the evolving landscape of deep learning, selecting the best pre-trained models from a growing number of choices is a challenge. Transferability scorers propose alleviating this scenario, but their recent proliferation, ironically, poses the challenge of their own assessment. In this work, we propose both robust benchmark guidelines for transferability scorers, and a well-founded technique to combine multiple scorers, which we show consistently improves their results. We extensively evaluate 13 scorers from literature across 11 datasets, comprising generalist, fine-grained, and medical imaging datasets. We show that few scorers match the predictive performance of the simple raw metric of models on ImageNet, and that all predictors suffer on medical datasets. Our results highlight the potential of combining different information sources for reliably predicting transferability across varied domains.
- Abstract(参考訳): ディープラーニングの進化する状況では、多くの選択肢から最高の事前学習モデルを選択することが難しい。
トランスファービリティスコアラーは、このシナリオを緩和することを提案するが、彼らの最近の増殖は皮肉にも、彼ら自身の評価の難しさを招いている。
本研究では、転送可能性スコアリングのための頑健なベンチマークガイドラインと、複数のスコアリングを組み合わせるためのしっかりとした手法の両方を提案し、その結果を一貫して改善することを示す。
総括的,微粒化,医用画像的データセットを含む11データセットの文献から13スコアを広範囲に評価した。
ImageNetの単純な生測値の予測性能にマッチするスコアがほとんどなく、全ての予測器が医療データセットに苦しむことを示す。
この結果から,異なる情報ソースを組み合わせることで,様々な領域間での転送可能性の確実な予測が可能となる可能性が示唆された。
関連論文リスト
- DUQGen: Effective Unsupervised Domain Adaptation of Neural Rankers by Diversifying Synthetic Query Generation [8.661419320202787]
MS-MARCOのような大規模タスク固有のトレーニングデータで事前訓練された最先端のニューラルローダーは、ドメイン適応なしで様々なランク付けタスクに強いパフォーマンスを示すことが示されている(ゼロショットとも呼ばれる)。
本稿では,従来の文献における重要なギャップに対処する,ランク付けのための教師なしドメイン適応手法であるDUQGenを提案する。
論文 参考訳(メタデータ) (2024-04-03T05:50:42Z) - Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning [50.809769498312434]
我々は、時間的デュアルディープス・スコーリング(TDDS)と呼ばれる新しいデータセット・プルーニング手法を提案する。
本手法は,10%のトレーニングデータで54.51%の精度を達成し,ランダム選択を7.83%以上,他の比較手法を12.69%以上上回る結果を得た。
論文 参考訳(メタデータ) (2023-11-22T03:45:30Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
視覚と言語の基礎は、様々な自然画像とテキストデータに基づいて事前訓練されており、有望なアプローチとして現れている。
一般化性能を,同じ分布データセット上で微調整した後,事前学習した各種モデルの未確認領域と比較した。
さらに,凍結モデルに対する新しいベイズ不確実性推定法を開発し,分布外データに基づくモデルの性能評価指標として利用した。
論文 参考訳(メタデータ) (2023-11-18T14:52:10Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - POUF: Prompt-oriented unsupervised fine-tuning for large pre-trained
models [62.23255433487586]
モデルに微調整を施したり、ラベルのないターゲットデータにプロンプトを施したりするための教師なしの微調整フレームワークを提案する。
本稿では,プロンプトとターゲットデータから抽出した離散分布を整列させて,言語拡張視覚とマスキング言語モデルの両方に適用する方法を示す。
論文 参考訳(メタデータ) (2023-04-29T22:05:22Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
Retrieval Models [41.45240621979654]
情報検索のための異種ベンチマークであるBEIRを紹介する。
ゼロショット評価設定における9つの最先端の検索モデルの有効性を検討する。
Dense-Retrievalモデルは計算効率が良いが、他のアプローチでは性能が劣ることが多い。
論文 参考訳(メタデータ) (2021-04-17T23:29:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。