On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines
- URL: http://arxiv.org/abs/2405.20459v1
- Date: Thu, 30 May 2024 20:12:14 GMT
- Title: On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines
- Authors: Selim Kuzucu, Kemal Oksuz, Jonathan Sadeghi, Puneet K. Dokania,
- Abstract summary: Reliable usage of object detectors require them to be calibrated.
Recent approaches involve designing new loss functions to obtain calibrated detectors by training them from scratch.
We propose a principled evaluation framework to jointly measure calibration and accuracy of object detectors.
- Score: 15.306933156466522
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reliable usage of object detectors require them to be calibrated -- a crucial problem that requires careful attention. Recent approaches towards this involve (1) designing new loss functions to obtain calibrated detectors by training them from scratch, and (2) post-hoc Temperature Scaling (TS) that learns to scale the likelihood of a trained detector to output calibrated predictions. These approaches are then evaluated based on a combination of Detection Expected Calibration Error (D-ECE) and Average Precision. In this work, via extensive analysis and insights, we highlight that these recent evaluation frameworks, evaluation metrics, and the use of TS have notable drawbacks leading to incorrect conclusions. As a step towards fixing these issues, we propose a principled evaluation framework to jointly measure calibration and accuracy of object detectors. We also tailor efficient and easy-to-use post-hoc calibration approaches such as Platt Scaling and Isotonic Regression specifically for object detection task. Contrary to the common notion, our experiments show that once designed and evaluated properly, post-hoc calibrators, which are extremely cheap to build and use, are much more powerful and effective than the recent train-time calibration methods. To illustrate, D-DETR with our post-hoc Isotonic Regression calibrator outperforms the recent train-time state-of-the-art calibration method Cal-DETR by more than 7 D-ECE on the COCO dataset. Additionally, we propose improved versions of the recently proposed Localization-aware ECE and show the efficacy of our method on these metrics as well. Code is available at: https://github.com/fiveai/detection_calibration.
Related papers
- Beyond Classification: Definition and Density-based Estimation of
Calibration in Object Detection [15.71719154574049]
We tackle the challenge of defining and estimating calibration error for deep neural networks (DNNs)
In particular, we adapt the definition of classification calibration error to handle the nuances associated with object detection.
We propose a consistent and differentiable estimator of the detection calibration error, utilizing kernel density estimation.
arXiv Detail & Related papers (2023-12-11T18:57:05Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - PseudoCal: A Source-Free Approach to Unsupervised Uncertainty
Calibration in Domain Adaptation [87.69789891809562]
Unsupervised domain adaptation (UDA) has witnessed remarkable advancements in improving the accuracy of models for unlabeled target domains.
The calibration of predictive uncertainty in the target domain, a crucial aspect of the safe deployment of UDA models, has received limited attention.
We propose PseudoCal, a source-free calibration method that exclusively relies on unlabeled target data.
arXiv Detail & Related papers (2023-07-14T17:21:41Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - Revisiting Calibration for Question Answering [16.54743762235555]
We argue that the traditional evaluation of calibration does not reflect usefulness of the model confidence.
We propose a new calibration metric, MacroCE, that better captures whether the model assigns low confidence to wrong predictions and high confidence to correct predictions.
arXiv Detail & Related papers (2022-05-25T05:49:56Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
We propose a fine-grained calibration metric that spans the gap between fully global and fully individualized calibration.
We then introduce a localized recalibration method, LoRe, that improves the LCE better than existing recalibration methods.
arXiv Detail & Related papers (2021-02-22T07:22:12Z) - Mitigating Bias in Calibration Error Estimation [28.46667300490605]
We introduce a simulation framework that allows us to empirically show that ECE_bin can systematically underestimate or overestimate the true calibration error.
We propose a simple alternative calibration error metric, ECE_sweep, in which the number of bins is chosen to be as large as possible.
arXiv Detail & Related papers (2020-12-15T23:28:06Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
We show that deep-ensembles do not necessarily lead to improved calibration properties.
We show that standard ensembling methods, when used in conjunction with modern techniques such as mixup regularization, can lead to less calibrated models.
This text examines the interplay between three of the most simple and commonly used approaches to leverage deep learning when data is scarce.
arXiv Detail & Related papers (2020-07-17T07:32:24Z) - Multivariate Confidence Calibration for Object Detection [7.16879432974126]
We present a novel framework to measure and calibrate biased confidence estimates of object detection methods.
Our approach allows, for the first time, to obtain calibrated confidence estimates with respect to image location and box scale.
We show that our developed methods outperform state-of-the-art calibration models for the task of object detection.
arXiv Detail & Related papers (2020-04-28T14:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.