論文の概要: Should we necessarily treat masses as localized when analysing tests of quantum gravity?
- arxiv url: http://arxiv.org/abs/2405.20514v1
- Date: Thu, 30 May 2024 22:17:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 16:05:36.913234
- Title: Should we necessarily treat masses as localized when analysing tests of quantum gravity?
- Title(参考訳): 量子重力のテストでは、質量を局所化として扱うべきだろうか?
- Authors: Adrian Kent,
- Abstract要約: 最近提案された「量子重力」のテーブルトップテストでは、非相対論的速度で質量の重ね合わせを作成し、分離し、再結合する。
分析は、干渉実験が十分に小さな加速を必要とする場合、無視可能な重力放射が生成されることを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently proposed ``table-top tests of quantum gravity'' involve creating, separating and recombining superpositions of masses at non-relativistic speeds. The general expectation is that these generate superpositions of gravitational fields via the Newtonian potential. Analyses suggest that negligible gravitational radiation is generated if the interference experiments involve sufficiently small accelerations. One way of thinking about this is that matter and the static gravitational field are temporarily entangled and then disentangled. Another is that the static gravitational field degrees of freedom are dependent on the matter and do not belong to a separate Hilbert space, and that there is always negligible entanglement between matter and dynamical gravitational degrees of freedom. In this last picture, localized masses effectively become infinitely extended objects, inseparable from their Newtonian potentials. While this picture seems hard to extend to a fully relativistic theory of non-quantum gravity, it has significant implications for analyses of how or whether BMV and other non-relativistic experiments might test the quantum nature of gravity. If the masses in a BMV experiment are regarded as occupying overlapping regions (or indeed all of space), explaining how they become entangled does not require that their gravitational interaction involves quantum information exchange. On this view, while the experiments test gravity in a regime where quantum theory describes all relevant matter degrees of freedom, they do not necessarily test its quantum nature. It might be argued that no plausible explanation other than quantum gravity could be consistent both with these experiments and with relativity. But this relies on further theoretical assumptions and is weaker than claiming direct evidence for quantum gravitational interactions from the experiments alone.
- Abstract(参考訳): 最近提案された「量子重力のテーブルトップテスト」では、非相対論的速度で質量の重ね合わせを作成し、分離し、再結合する。
一般的な期待は、これらがニュートンポテンシャルを介して重力場の重畳を生成することである。
分析は、干渉実験が十分に小さな加速を必要とする場合、無視可能な重力放射が生成されることを示唆している。
これについて考える1つの方法は、物質と静的重力場が一時的に絡み合っており、その後に絡み合わされるということです。
もう一つは、静的重力場の自由度が物質に依存し、別のヒルベルト空間に属さないことと、物質と動的重力場の自由度の間には常に無視可能な絡み合いがあることである。
この最後の図では、局所化された質量は、ニュートンポテンシャルとは分離できない無限に拡張された物体となる。
この図は、非量子重力の完全な相対論的理論にまで拡張することは困難に思えるが、BMVや他の非相対論的実験が重力の量子的性質をテストするかどうかを解析するために重要な意味を持つ。
BMV実験の質量が重なり合う領域(または実際には空間の全て)を占めると見なされる場合、それらがどのように絡み合うかを説明するには、それらの重力相互作用が量子情報交換を伴う必要はない。
この観点では、実験は、量子論がすべての関連する自由度を記述している状態において重力をテストするが、必ずしも量子の性質をテストするわけではない。
量子重力以外のもっともらしい説明はこれらの実験と相対性理論の両方と一致しないかもしれないと論じられるかもしれない。
しかし、これはさらなる理論的な仮定に依存しており、実験だけで量子重力相互作用の直接的な証拠を主張するよりも弱い。
関連論文リスト
- Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
テーブルトップナノダイアモンドを用いた干渉計の実現可能性について検討する。
安定した質量を持つ物体の量子重ね合わせを頼りにすることで、干渉計は小さな範囲の電磁場を利用することができるかもしれない。
論文 参考訳(メタデータ) (2024-05-31T17:20:59Z) - Quantum effects in gravity beyond the Newton potential from a delocalised quantum source [0.9405321764712891]
重力が古典的な記述と互換性がないことを示すのは初めてである。
重力によって引き起こされる2つの重力源間の絡み合いの発生のような実験はニュートンポテンシャルと説明できる。
論文 参考訳(メタデータ) (2024-02-15T19:33:04Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
我々はSchr"odinger-Newton(SN)理論とCWL(Correlated Worldline)理論を考察し、それらが従来の量子力学と区別可能であることを示す。
低周波量子光学系の実験的制御がさらに進むまで、理論間の区別は非常に困難である。
論文 参考訳(メタデータ) (2023-11-03T17:06:57Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
我々は、高感度重力による量子位相シフトを用いて、そのような粒子を直接検出する理論的な可能性を示す。
特に、ジョセフソン接合を利用したプロトコルを考える。
論文 参考訳(メタデータ) (2023-09-15T08:22:46Z) - Testing the Braneworld Theory with Identical Particles [41.94295877935867]
ブレーンワールドのシナリオは、私たちが効果的に観測する時空は実際には高次元の時空に埋め込まれた4次元のブレーンであると仮定している。
本研究では、重力相互作用する同一粒子の対を用いて、特定のブレーンワールドモデルの妥当性を判定する実験実験を提案する。
論文 参考訳(メタデータ) (2023-09-06T16:40:12Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
調和的に閉じ込められたテスト質量に結合した1つの非局在化質量に基づくセットアップを提案する。
本研究では, カシミール・ポルダー力のテーム能力に大きく依存する, 実験の原理的実現可能性について検討する。
論文 参考訳(メタデータ) (2023-07-18T15:40:16Z) - Does the Universe have its own mass? [62.997667081978825]
宇宙の質量は重力制約の非ゼロ値の分布である。
重力のユークリッド量子論の定式化も、初期状態を決定するために提案されている。
通常の物質とは無関係であるため、自身の質量の分布は空間の幾何学に影響を及ぼす。
論文 参考訳(メタデータ) (2022-12-23T22:01:32Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
非相対論的量子力学では、そのような実験における重力場は重ね合わせ状態として記述することができる。
重力の代替理論が重力重畳状態を回避することを実証的に実証する。
重畳された重力源を用いた実験は、重力が古典的でないというより強い証拠を与える。
論文 参考訳(メタデータ) (2022-09-06T04:37:07Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
重力場のみを介して相互作用する2つの粒子間の絡み合いを観測する実験は、重力を定量化する必要があるかどうかのテストとして提案されている。
古典的時空における量子物質の重力相互作用に関するパラメトリケートモデルを提案し、量子力学のデ・ブロイ=ボームの定式化に着想を得た。
論文 参考訳(メタデータ) (2022-05-02T14:37:24Z) - Can we detect the quantum nature of weak gravitational fields? [0.0]
重力の量子化に関する問題に対する実験的な答えは、重力波検出器の時代に新たな関心を持つことである。
我々は,量子重力の重要な部分集合について検討し,テーブルトップ実験と干渉計で弱い重力場の量子シグネチャを検出する。
論文 参考訳(メタデータ) (2021-10-06T07:21:09Z) - Gravitational effects in macroscopic quantum systems: a first-principles
analysis [0.0]
一般相対性理論の弱場限界を物質とその量子化によって解析する。
この分析は、マクロ量子系における重力効果の第一原理記述を提供するための予測量子理論を目指している。
論文 参考訳(メタデータ) (2021-03-14T21:29:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。