論文の概要: Diffusion On Syntax Trees For Program Synthesis
- arxiv url: http://arxiv.org/abs/2405.20519v1
- Date: Thu, 30 May 2024 22:31:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 16:05:36.905226
- Title: Diffusion On Syntax Trees For Program Synthesis
- Title(参考訳): プログラム合成のための構文木上の拡散
- Authors: Shreyas Kapur, Erik Jenner, Stuart Russell,
- Abstract要約: 大規模言語モデルは一度に1つのトークンを生成する。
彼らの自己回帰生成プロセスは、プログラムの出力を観察するフィードバックを欠いている。
文脈自由文法の構文木で動作する神経拡散モデルを提案する。
- 参考スコア(独自算出の注目度): 8.878069731298014
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models generate code one token at a time. Their autoregressive generation process lacks the feedback of observing the program's output. Training LLMs to suggest edits directly can be challenging due to the scarcity of rich edit data. To address these problems, we propose neural diffusion models that operate on syntax trees of any context-free grammar. Similar to image diffusion models, our method also inverts ``noise'' applied to syntax trees. Rather than generating code sequentially, we iteratively edit it while preserving syntactic validity, which makes it easy to combine this neural model with search. We apply our approach to inverse graphics tasks, where our model learns to convert images into programs that produce those images. Combined with search, our model is able to write graphics programs, see the execution result, and debug them to meet the required specifications. We additionally show how our system can write graphics programs for hand-drawn sketches.
- Abstract(参考訳): 大規模言語モデルは一度に1つのトークンを生成する。
彼らの自己回帰生成プロセスは、プログラムの出力を観察するフィードバックを欠いている。
リッチな編集データが不足しているため、直接編集を提案するためのLLMのトレーニングは困難である。
これらの問題に対処するために、文脈自由文法の構文木で動作する神経拡散モデルを提案する。
画像拡散モデルと同様に、構文木に適用した ``noise'' も反転する。
逐次的にコードを生成するのではなく、構文的妥当性を維持しながら反復的に編集するので、このニューラルモデルと検索を簡単に組み合わせることができる。
この手法を逆グラフィックスタスクに適用し,そのモデルで画像を生成するプログラムに変換する方法を学習する。
検索と組み合わせることで、我々のモデルはグラフィックスプログラムを作成し、実行結果を確認し、必要な仕様を満たすためにデバッグすることができる。
また,手描きスケッチのためのグラフィックプログラムの書き方についても紹介する。
関連論文リスト
- UDiffText: A Unified Framework for High-quality Text Synthesis in
Arbitrary Images via Character-aware Diffusion Models [25.219960711604728]
本稿では,事前学習した拡散モデルを用いたテキスト画像生成手法を提案する。
我々のアプローチは、オリジナルのCLIPエンコーダを置き換える軽量文字レベルテキストエンコーダの設計と訓練である。
推論段階の精細化プロセスを用いることで、任意に与えられた画像のテキストを合成する際に、顕著に高いシーケンス精度を実現する。
論文 参考訳(メタデータ) (2023-12-08T07:47:46Z) - Self-correcting LLM-controlled Diffusion Models [83.26605445217334]
自己補正LPM制御拡散(SLD)を導入する
SLDは、入力プロンプトから画像を生成し、プロンプトとアライメントを評価し、生成した画像の不正確性に対して自己補正を行うフレームワークである。
提案手法は, 生成数, 属性結合, 空間的関係において, 不正確な世代の大部分を補正することができる。
論文 参考訳(メタデータ) (2023-11-27T18:56:37Z) - Reverse Stable Diffusion: What prompt was used to generate this image? [73.10116197883303]
本研究では, 生成拡散モデルにより生成された画像に対して, 迅速な埋め込みを予測できる課題について検討する。
本稿では,複数ラベルの語彙分類を目的とする共同学習フレームワークを提案する。
我々はDiffusionDBデータセットの実験を行い、安定拡散によって生成された画像からテキストプロンプトを予測する。
論文 参考訳(メタデータ) (2023-08-02T23:39:29Z) - DiffUTE: Universal Text Editing Diffusion Model [32.384236053455]
汎用的な自己教師型テキスト編集拡散モデル(DiffUTE)を提案する。
それは、その現実的な外観を維持しながら、ソースイメージ内の単語を別の単語に置き換えたり、修正したりすることを目的としている。
提案手法は印象的な性能を実現し,高忠実度画像の編集を可能にする。
論文 参考訳(メタデータ) (2023-05-18T09:06:01Z) - High-Fidelity Guided Image Synthesis with Latent Diffusion Models [50.39294302741698]
提案手法は, ユーザ満足度スコアを85.32%以上上回り, 従来の最先端技術よりも優れていた。
人的ユーザ調査の結果、提案手法は、全体のユーザ満足度スコアにおいて、従来の最先端技術よりも85.32%以上優れていたことが示されている。
論文 参考訳(メタデータ) (2022-11-30T15:43:20Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - eDiffi: Text-to-Image Diffusion Models with an Ensemble of Expert
Denoisers [87.52504764677226]
大規模拡散に基づく生成モデルは、テキスト条件の高解像度画像合成においてブレークスルーをもたらした。
異なる段階合成に特化したテキスト・画像拡散モデルのアンサンブルを訓練する。
eDiffiと呼ばれる拡散モデルのアンサンブルは、同じ推論コストを維持しながらテキストアライメントを改善する。
論文 参考訳(メタデータ) (2022-11-02T17:43:04Z) - Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [72.60554897161948]
最近のテキストと画像のマッチングモデルは、未修正画像と文の大きなコーパスに対してコントラスト学習を適用している。
本研究では、そのようなモデルを用いて、推論時に画像が与えられた記述テキストを生成する。
結果として得られたキャプションは、教師付きキャプション法によるキャプションよりもはるかに制限を受けない。
論文 参考訳(メタデータ) (2021-11-29T11:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。