論文の概要: Fully Unconstrained Online Learning
- arxiv url: http://arxiv.org/abs/2405.20540v1
- Date: Thu, 30 May 2024 23:41:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:55:52.625197
- Title: Fully Unconstrained Online Learning
- Title(参考訳): 完全に制約のないオンライン学習
- Authors: Ashok Cutkosky, Zakaria Mhammedi,
- Abstract要約: G$-Lipschitz convexの損失に対して、後悔する$G|w_star|sqrtTlog(|w_star|GsqrtT) + |w_star|2 + G2$を得るオンライン学習アルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 45.31874270358511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide an online learning algorithm that obtains regret $G\|w_\star\|\sqrt{T\log(\|w_\star\|G\sqrt{T})} + \|w_\star\|^2 + G^2$ on $G$-Lipschitz convex losses for any comparison point $w_\star$ without knowing either $G$ or $\|w_\star\|$. Importantly, this matches the optimal bound $G\|w_\star\|\sqrt{T}$ available with such knowledge (up to logarithmic factors), unless either $\|w_\star\|$ or $G$ is so large that even $G\|w_\star\|\sqrt{T}$ is roughly linear in $T$. Thus, it matches the optimal bound in all cases in which one can achieve sublinear regret, which arguably most "interesting" scenarios.
- Abstract(参考訳): G$-Lipschitz convex loss for any comparison point $w_\star$ without any comparison point $G$ or $\|w_\star\|$. は、$G$と$\|w_\star\|$のどちらかを知らずに、後悔する$G\|w_\star\|G\sqrt{T\log(\|w_\star\|G\sqrt{T})} + \|w_\star\|^2 + G^2$を得るオンライン学習アルゴリズムを提供する。
重要なことに、これはそのような知識(対数因子まで)で利用できる最適境界 $G\|w_\star\|\sqrt{T}$ と一致するが、$G\|w_\star\|\sqrt{T}$ が大きすぎる限り、$G\|w_\star\|\sqrt{T}$ も大きすぎる。
したがって、すべての場合において、最も「興味深い」シナリオであるサブ線形後悔を達成できる最適境界と一致する。
関連論文リスト
- On the Minimax Regret for Online Learning with Feedback Graphs [5.721380617450645]
強く観察可能な無向フィードバックグラフを用いて,オンライン学習を後悔する上で,上層と下層の境界を改善した。
改良された上界$mathcalObigl(sqrtalpha T(ln K)/(lnalpha)bigr)$ hold for any $alpha$ and the lower bounds for bandits and experts。
論文 参考訳(メタデータ) (2023-05-24T17:40:57Z) - Optimal SQ Lower Bounds for Learning Halfspaces with Massart Noise [9.378684220920562]
マスアートノイズの存在下でハーフスペースを学習するための、最も厳密な統計クエリ(SQ)の下界。
任意の $eta in [0,1/2]$ に対して、$eta$ よりも誤り分類誤差の少ない全ての SQ アルゴリズムは、スーパーポリノミカルな精度のクエリを必要とすることを示す。
論文 参考訳(メタデータ) (2022-01-24T17:33:19Z) - Logarithmic Regret from Sublinear Hints [76.87432703516942]
自然クエリモデルにより,アルゴリズムが$O(log T)$ regretsを$O(sqrtT)$ hintsで得ることを示す。
また、$o(sqrtT)$ hintsは$Omega(sqrtT)$ regretより保証できないことも示しています。
論文 参考訳(メタデータ) (2021-11-09T16:50:18Z) - Contextual Recommendations and Low-Regret Cutting-Plane Algorithms [49.91214213074933]
本稿では、ナビゲーションエンジンやレコメンデーションシステムにおけるルーティングアプリケーションによって動機付けられた、コンテキスト線形帯域の次の変種について考察する。
我々は、真の点$w*$と分離オラクルが返す超平面の間の全距離を、低い「回帰」を持つ新しい切断平面アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-06-09T05:39:05Z) - Nearly Horizon-Free Offline Reinforcement Learning [97.36751930393245]
S$状態、$A$アクション、計画的地平$H$で、エピソードな時間同質なMarkov決定プロセスに関するオフライン強化学習を再考する。
経験的MDPを用いた評価と計画のための,約$H$自由なサンプル複雑性境界の最初の集合を得る。
論文 参考訳(メタデータ) (2021-03-25T18:52:17Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
我々は,バンディットフィードバックを用いてオンライン学習を学習する。
learnerは、コスト/リワード関数が"pseudo-1d"構造を許可するゼロ次オラクルのみにアクセスできる。
我々は、$T$がラウンドの数である任意のアルゴリズムの後悔のために$min(sqrtdT、T3/4)$の下限を示しています。
ランダム化オンライングラデーション下降とカーネル化指数重み法を組み合わせた新しいアルゴリズムsbcalgを提案し,疑似-1d構造を効果的に活用する。
論文 参考訳(メタデータ) (2021-02-15T08:16:51Z) - $Q$-learning with Logarithmic Regret [60.24952657636464]
楽観的な$Q$は$mathcalOleft(fracSAcdot mathrmpolyleft(Hright)Delta_minlogleft(SATright)right)$ cumulative regret bound, where $S$ is the number of state, $A$ is the number of action, $H$ is the planning horizon, $T$ is the total number of steps, $Delta_min$ is the least sub-Optitimality gap。
論文 参考訳(メタデータ) (2020-06-16T13:01:33Z) - Adaptive Online Learning with Varying Norms [45.11667443216861]
オンライン凸最適化アルゴリズムは、あるドメインで$w_t$を出力する。
この結果を用いて新しい「完全行列」型後悔境界を得る。
論文 参考訳(メタデータ) (2020-02-10T17:22:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。