論文の概要: Certifying Global Robustness for Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2405.20556v1
- Date: Fri, 31 May 2024 00:46:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:55:52.605646
- Title: Certifying Global Robustness for Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークのグローバルロバスト性認証
- Authors: You Li, Guannan Zhao, Shuyu Kong, Yunqi He, Hai Zhou,
- Abstract要約: グローバルなディープニューラルネットワークは、すべての意味のある入力に対する摂動に抵抗する。
現在のロバストネス認証手法は、局所ロバストネスを強調し、スケールと一般化に苦慮している。
本稿では,ディープニューラルネットワークのグローバルロバスト性を評価・検証するための体系的かつ効率的な手法を提案する。
- 参考スコア(独自算出の注目度): 3.8556106468003613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A globally robust deep neural network resists perturbations on all meaningful inputs. Current robustness certification methods emphasize local robustness, struggling to scale and generalize. This paper presents a systematic and efficient method to evaluate and verify global robustness for deep neural networks, leveraging the PAC verification framework for solid guarantees on verification results. We utilize probabilistic programs to characterize meaningful input regions, setting a realistic standard for global robustness. Additionally, we introduce the cumulative robustness curve as a criterion in evaluating global robustness. We design a statistical method that combines multi-level splitting and regression analysis for the estimation, significantly reducing the execution time. Experimental results demonstrate the efficiency and effectiveness of our verification method and its capability to find rare and diversified counterexamples for adversarial training.
- Abstract(参考訳): グローバルに堅牢なディープニューラルネットワークは、すべての意味のある入力に対する摂動に抵抗する。
現在のロバストネス認証手法は、局所ロバストネスを強調し、スケールと一般化に苦慮している。
本稿では,深層ニューラルネットワークのグローバルロバスト性を評価・検証するための系統的かつ効率的な手法を提案する。
我々は確率的プログラムを用いて意味のある入力領域を特徴づけ、グローバルロバストネスの現実的な標準を設定する。
さらに,大域的ロバスト性評価の基準として累積ロバスト性曲線を導入する。
我々は,多段階分割と回帰分析を組み合わせた統計的手法を設計し,実行時間を著しく短縮する。
実験により, 本手法の有効性と有効性を示し, 対人訓練のための希少かつ多種多様な反例を見出す能力を示した。
関連論文リスト
- Distributionally Robust Statistical Verification with Imprecise Neural
Networks [4.094049541486327]
AI安全性における特に困難な問題は、高次元自律システムの振る舞いを保証することだ。
本稿では,アクティブラーニング,不確実性定量化,ニューラルネットワーク検証を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-28T18:06:24Z) - Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
敵の防御は、ディープニューラルネットワークの堅牢性を大幅に向上させた。
本研究では,ネットワーク予測における導入性に関する一般的な手法を提案する。
また、信頼性の低い予測を拒否する意思決定の円滑化にも活用する。
論文 参考訳(メタデータ) (2023-06-10T15:11:24Z) - Using Z3 for Formal Modeling and Verification of FNN Global Robustness [15.331024247043999]
SMTソルバZ3を用いたDeepGlobalの完全な仕様と実装を提案する。
実装の有効性と改善性を評価するため、ベンチマークデータセットのセットに対して広範な実験を行う。
論文 参考訳(メタデータ) (2023-04-20T15:40:22Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation
using Generative Models [74.43215520371506]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Generalizability of Adversarial Robustness Under Distribution Shifts [57.767152566761304]
本研究は, 実証的, 証明された敵対的堅牢性間の相互作用と, ドメインの一般化を両立させるための第一歩を踏み出した。
複数のドメインでロバストモデルをトレーニングし、その正確性とロバスト性を評価する。
本研究は, 現実の医療応用をカバーするために拡張され, 敵の増大は, クリーンデータ精度に最小限の影響を伴って, 強靭性の一般化を著しく促進する。
論文 参考訳(メタデータ) (2022-09-29T18:25:48Z) - Efficient Global Robustness Certification of Neural Networks via
Interleaving Twin-Network Encoding [8.173681464694651]
混合整数線形プログラミング(MILP)問題として、ReLUアクティベーション機能付きニューラルネットワークのグローバルロバスト性認証を定式化する。
我々のアプローチは、ニューラルネットワークの2つのコピーを並べて符号化する、新しいインターリービングツインネットワーク符号化スキームを含む。
クローズドループ制御の安全性検証のケーススタディを行い,本手法の重要性と実用性を実証した。
論文 参考訳(メタデータ) (2022-03-26T19:23:37Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Globally-Robust Neural Networks [21.614262520734595]
我々は、オンラインローカルロバストネス認証の運用特性を捉えた、グローバルロバストネスの概念を定式化する。
効率的なグローバルLipschitz境界をネットワークに組み込むことにより、広く使用されているアーキテクチャをこの目的に容易に適応できることを示します。
論文 参考訳(メタデータ) (2021-02-16T21:10:52Z) - Data-Driven Assessment of Deep Neural Networks with Random Input
Uncertainty [14.191310794366075]
我々は,ネットワーク出力の安全性を同時に証明し,ローカライズ可能なデータ駆動最適化手法を開発した。
深部ReLUネットワークにおける提案手法の有効性とトラクタビリティを実験的に実証した。
論文 参考訳(メタデータ) (2020-10-02T19:13:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。