Can Machine Learning Assist in Diagnosis of Primary Immune Thrombocytopenia? A feasibility study
- URL: http://arxiv.org/abs/2405.20562v1
- Date: Fri, 31 May 2024 01:04:46 GMT
- Title: Can Machine Learning Assist in Diagnosis of Primary Immune Thrombocytopenia? A feasibility study
- Authors: Haroon Miah, Dimitrios Kollias, Giacinto Luca Pedone, Drew Provan, Frederick Chen,
- Abstract summary: Primary Immune thrombocytopenia (ITP) is a rare autoimmune disease characterised by immune-mediated destruction of peripheral blood platelets in patients.
There is no established test to confirm the disease and no biomarker with which one can predict the response to treatment and outcome.
We conduct a feasibility study to check if machine learning can be applied effectively for diagnosis of ITP using routine blood tests and demographic data in a non-acute outpatient setting.
- Score: 12.4123972735841
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Primary Immune thrombocytopenia (ITP) is a rare autoimmune disease characterised by immune-mediated destruction of peripheral blood platelets in patients leading to low platelet counts and bleeding. The diagnosis and effective management of ITP is challenging because there is no established test to confirm the disease and no biomarker with which one can predict the response to treatment and outcome. In this work we conduct a feasibility study to check if machine learning can be applied effectively for diagnosis of ITP using routine blood tests and demographic data in a non-acute outpatient setting. Various ML models, including Logistic Regression, Support Vector Machine, k-Nearest Neighbor, Decision Tree and Random Forest, were applied to data from the UK Adult ITP Registry and a general hematology clinic. Two different approaches were investigated: a demographic-unaware and a demographic-aware one. We conduct extensive experiments to evaluate the predictive performance of these models and approaches, as well as their bias. The results revealed that Decision Tree and Random Forest models were both superior and fair, achieving nearly perfect predictive and fairness scores, with platelet count identified as the most significant variable. Models not provided with demographic information performed better in terms of predictive accuracy but showed lower fairness score, illustrating a trade-off between predictive performance and fairness.
Related papers
- Debias-CLR: A Contrastive Learning Based Debiasing Method for Algorithmic Fairness in Healthcare Applications [0.17624347338410748]
We proposed an implicit in-processing debiasing method to combat disparate treatment.
We used clinical notes of heart failure patients and used diagnostic codes, procedure reports and physiological vitals of the patients.
We found that Debias-CLR was able to reduce the Single-Category Word Embedding Association Test (SC-WEAT) effect size score when debiasing for gender and ethnicity.
arXiv Detail & Related papers (2024-11-15T19:32:01Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Evaluating Echo State Network for Parkinson's Disease Prediction using
Voice Features [1.2289361708127877]
This study aims to develop a diagnostic model capable of achieving both high accuracy and minimizing false negatives.
Various machine learning methods, including Echo State Networks (ESN), Random Forest, k-nearest Neighbors, Support Vector, Extreme Gradient Boosting, and Decision Tree, are employed and thoroughly evaluated.
ESN consistently maintains a false negative rate of less than 8% in 83% of cases.
arXiv Detail & Related papers (2024-01-28T14:39:43Z) - Treatment Outcome Prediction for Intracerebral Hemorrhage via Generative
Prognostic Model with Imaging and Tabular Data [18.87414111429906]
Intracerebral hemorrhage is the second most common and deadliest form of stroke.
Despite medical advances, predicting treat ment outcomes for ICH remains a challenge.
Model is trained on observational data collected from non-randomized controlled trials.
arXiv Detail & Related papers (2023-07-24T14:57:40Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - VIRDOC: Statistical and Machine Learning by a VIRtual DOCtor to Predict
Dengue Fatality [0.0]
Clinicians conduct routine diagnosis by scrutinizing signs and symptoms of patients in treating epidemics.
The success of the therapeutic regimen relies largely on the accuracy of interpretation of such sign-symptoms, based on which the clinician ranks the potent causes of the epidemic and analyzes their interdependence to devise sustainable containment strategies.
This study proposed an alternative medical front, a VIRtual DOCtor (VIRDOC), that can self-consistently rank key contributors of an epidemic and also correctly identify the infection stage, using the language of statistical modelling and Machine Learning.
arXiv Detail & Related papers (2021-04-29T12:06:05Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Personalized pathology test for Cardio-vascular disease: Approximate
Bayesian computation with discriminative summary statistics learning [48.7576911714538]
We propose a platelet deposition model and an inferential scheme to estimate the biologically meaningful parameters using approximate computation.
This work opens up an unprecedented opportunity of personalized pathology test for CVD detection and medical treatment.
arXiv Detail & Related papers (2020-10-13T15:20:21Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.