Knowledge Enhanced Multi-intent Transformer Network for Recommendation
- URL: http://arxiv.org/abs/2405.20565v1
- Date: Fri, 31 May 2024 01:07:37 GMT
- Title: Knowledge Enhanced Multi-intent Transformer Network for Recommendation
- Authors: Ding Zou, Wei Wei, Feida Zhu, Chuanyu Xu, Tao Zhang, Chengfu Huo,
- Abstract summary: We propose a novel approach named Knowledge Enhanced Multi-intent Transformer Network for Recommendation (KGTN)
Global Intents with Graph Transformer focuses on capturing learnable user intents, by incorporating global signals from user-item-relation-entity interactions with a graph transformer.
Knowledge Contrastive Denoising under Intents is dedicated to learning precise and robust representations.
- Score: 11.53964363972865
- License:
- Abstract: Incorporating Knowledge Graphs into Recommendation has attracted growing attention in industry, due to the great potential of KG in providing abundant supplementary information and interpretability for the underlying models. However, simply integrating KG into recommendation usually brings in negative feedback in industry, due to the ignorance of the following two factors: i) users' multiple intents, which involve diverse nodes in KG. For example, in e-commerce scenarios, users may exhibit preferences for specific styles, brands, or colors. ii) knowledge noise, which is a prevalent issue in Knowledge Enhanced Recommendation (KGR) and even more severe in industry scenarios. The irrelevant knowledge properties of items may result in inferior model performance compared to approaches that do not incorporate knowledge. To tackle these challenges, we propose a novel approach named Knowledge Enhanced Multi-intent Transformer Network for Recommendation (KGTN), comprising two primary modules: Global Intents Modeling with Graph Transformer, and Knowledge Contrastive Denoising under Intents. Specifically, Global Intents with Graph Transformer focuses on capturing learnable user intents, by incorporating global signals from user-item-relation-entity interactions with a graph transformer, meanwhile learning intent-aware user/item representations. Knowledge Contrastive Denoising under Intents is dedicated to learning precise and robust representations. It leverages intent-aware representations to sample relevant knowledge, and proposes a local-global contrastive mechanism to enhance noise-irrelevant representation learning. Extensive experiments conducted on benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. And online A/B testing results on Alibaba large-scale industrial recommendation platform also indicate the real-scenario effectiveness of KGTN.
Related papers
- Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCL aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.
We introduce a multi-level vector quantizer in an end-to-end manner to quantize user and item representations into discrete codes.
For neighborhood structure, we propose virtual neighbor augmentation by treating discrete codes as virtual neighbors.
Regarding semantic relevance, we identify similar users/items based on shared discrete codes and interaction targets to generate the semantically relevant view.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - Knowledge Graph Pruning for Recommendation [44.21660467094777]
We propose a novel approach called KGTrimmer for knowledge graph pruning tailored for recommendation.
For the collective view, we embrace the idea of collective intelligence by extracting community consensus based on abundant collaborative signals.
Next, we build an end-to-end importance-aware graph neural network, which injects filtered knowledge to enhance the distillation of valuable user-item collaborative signals.
arXiv Detail & Related papers (2024-05-19T12:07:24Z) - On the Sweet Spot of Contrastive Views for Knowledge-enhanced
Recommendation [49.18304766331156]
We propose a new contrastive learning framework for KG-enhanced recommendation.
We construct two separate contrastive views for KG and IG, and maximize their mutual information.
Extensive experimental results on three real-world datasets demonstrate the effectiveness and efficiency of our method.
arXiv Detail & Related papers (2023-09-23T14:05:55Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Knowledge Graph Contrastive Learning for Recommendation [32.918864602360884]
We design a general Knowledge Graph Contrastive Learning framework to alleviate the information noise for knowledge graph-enhanced recommender systems.
Specifically, we propose a knowledge graph augmentation schema to suppress KG noise in information aggregation.
We exploit additional supervision signals from the KG augmentation process to guide a cross-view contrastive learning paradigm.
arXiv Detail & Related papers (2022-05-02T15:24:53Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
We propose Knowledge-aware Conditional Attention Networks (KCAN) to incorporate knowledge graph into a recommender system.
We use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph.
Then, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations.
arXiv Detail & Related papers (2021-11-03T09:40:43Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - A Duet Recommendation Algorithm Based on Jointly Local and Global
Representation Learning [15.942495330390463]
We propose a knowledge-aware-based recommendation algorithm to capture the local and global representation learning from heterogeneous information.
Based on the method that local and global representations are learned jointly by graph convolutional networks with attention mechanism, the final recommendation probability is calculated by a fully-connected neural network.
arXiv Detail & Related papers (2020-12-03T01:52:14Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.