Skeleton-OOD: An End-to-End Skeleton-Based Model for Robust Out-of-Distribution Human Action Detection
- URL: http://arxiv.org/abs/2405.20633v3
- Date: Thu, 19 Dec 2024 06:22:05 GMT
- Title: Skeleton-OOD: An End-to-End Skeleton-Based Model for Robust Out-of-Distribution Human Action Detection
- Authors: Jing Xu, Anqi Zhu, Jingyu Lin, Qiuhong Ke, Cunjian Chen,
- Abstract summary: We propose a novel end-to-end skeleton-based model called Skeleton-OOD.
Skeleton-OOD is committed to improving the effectiveness of OOD tasks while ensuring the accuracy of ID recognition.
Our findings underscore the effectiveness of classic OOD detection techniques in the context of skeleton-based action recognition tasks.
- Score: 17.85872085904999
- License:
- Abstract: Human action recognition is crucial in computer vision systems. However, in real-world scenarios, human actions often fall outside the distribution of training data, requiring a model to both recognize in-distribution (ID) actions and reject out-of-distribution (OOD) ones. Despite its importance, there has been limited research on OOD detection in human actions. Existing works on OOD detection mainly focus on image data with RGB structure, and many methods are post-hoc in nature. While these methods are convenient and computationally efficient, they often lack sufficient accuracy, fail to consider the exposure of OOD samples, and ignore the application in skeleton structure data. To address these challenges, we propose a novel end-to-end skeleton-based model called Skeleton-OOD, which is committed to improving the effectiveness of OOD tasks while ensuring the accuracy of ID recognition. Through extensive experiments conducted on NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-400 datasets, Skeleton-OOD demonstrates the superior performance of our proposed approach compared to state-of-the-art methods. Our findings underscore the effectiveness of classic OOD detection techniques in the context of skeleton-based action recognition tasks, offering promising avenues for future research in this field. Code is available at https://github.com/YilliaJing/Skeleton-OOD.git.
Related papers
- Out-of-Distribution Detection using Synthetic Data Generation [21.612592503592143]
In- and out-of-distribution (OOD) inputs are crucial for reliable deployment of classification systems.
We present a method that harnesses the generative capabilities of Large Language Models (LLMs) to create high-quality synthetic OOD proxies.
arXiv Detail & Related papers (2025-02-05T16:22:09Z) - Self-Calibrated Tuning of Vision-Language Models for Out-of-Distribution Detection [24.557227100200215]
Out-of-distribution (OOD) detection is crucial for deploying reliable machine learning models in open-world applications.
Recent advances in CLIP-based OOD detection have shown promising results via regularizing prompt tuning with OOD features extracted from ID data.
We propose a novel framework, namely, Self-Calibrated Tuning (SCT), to mitigate this problem for effective OOD detection with only the given few-shot ID data.
arXiv Detail & Related papers (2024-11-05T02:29:16Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - NECO: NEural Collapse Based Out-of-distribution detection [2.4958897155282282]
We introduce NECO, a novel post-hoc method for OOD detection.
Our experiments demonstrate that NECO achieves both small and large-scale OOD detection tasks.
We provide a theoretical explanation for the effectiveness of our method in OOD detection.
arXiv Detail & Related papers (2023-10-10T17:53:36Z) - Can Pre-trained Networks Detect Familiar Out-of-Distribution Data? [37.36999826208225]
We study the effect of PT-OOD on the OOD detection performance of pre-trained networks.
We find that the low linear separability of PT-OOD in the feature space heavily degrades the PT-OOD detection performance.
We propose a unique solution to large-scale pre-trained models: Leveraging powerful instance-by-instance discriminative representations of pre-trained models.
arXiv Detail & Related papers (2023-10-02T02:01:00Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.