NECO: NEural Collapse Based Out-of-distribution detection
- URL: http://arxiv.org/abs/2310.06823v3
- Date: Tue, 27 Feb 2024 15:33:52 GMT
- Title: NECO: NEural Collapse Based Out-of-distribution detection
- Authors: Mou\"in Ben Ammar, Nacim Belkhir, Sebastian Popescu, Antoine
Manzanera, Gianni Franchi
- Abstract summary: We introduce NECO, a novel post-hoc method for OOD detection.
Our experiments demonstrate that NECO achieves both small and large-scale OOD detection tasks.
We provide a theoretical explanation for the effectiveness of our method in OOD detection.
- Score: 2.4958897155282282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting out-of-distribution (OOD) data is a critical challenge in machine
learning due to model overconfidence, often without awareness of their
epistemological limits. We hypothesize that ``neural collapse'', a phenomenon
affecting in-distribution data for models trained beyond loss convergence, also
influences OOD data. To benefit from this interplay, we introduce NECO, a novel
post-hoc method for OOD detection, which leverages the geometric properties of
``neural collapse'' and of principal component spaces to identify OOD data. Our
extensive experiments demonstrate that NECO achieves state-of-the-art results
on both small and large-scale OOD detection tasks while exhibiting strong
generalization capabilities across different network architectures.
Furthermore, we provide a theoretical explanation for the effectiveness of our
method in OOD detection. Code is available at https://gitlab.com/drti/neco
Related papers
- Dimensionality-induced information loss of outliers in deep neural networks [29.15751143793406]
Out-of-distribution (OOD) detection is a critical issue for systems using a deep neural network (DNN)
We experimentally clarify this issue by investigating the layer dependence of feature representations from multiple perspectives.
We propose a dimensionality-aware OOD detection method based on alignment of features and weights.
arXiv Detail & Related papers (2024-10-29T01:52:46Z) - The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection [75.65876949930258]
Out-of-distribution (OOD) detection is essential for model trustworthiness.
We show that the superior OOD detection performance of state-of-the-art methods is achieved by secretly sacrificing the OOD generalization ability.
arXiv Detail & Related papers (2024-10-12T07:02:04Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Skeleton-OOD: An End-to-End Skeleton-Based Model for Robust Out-of-Distribution Human Action Detection [17.85872085904999]
We propose a novel end-to-end skeleton-based model called Skeleton-OOD.
Skeleton-OOD is committed to improving the effectiveness of OOD tasks while ensuring the accuracy of ID recognition.
Our findings underscore the effectiveness of classic OOD detection techniques in the context of skeleton-based action recognition tasks.
arXiv Detail & Related papers (2024-05-31T05:49:37Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
We introduce a new aspect for analyzing the difference in model outputs between in-distribution data and OOD data.
We propose a novel method, Leveraging Important Neurons (LINe), for post-hoc Out of distribution detection.
arXiv Detail & Related papers (2023-03-24T13:49:05Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
We introduce Igeood, an effective method for detecting out-of-distribution (OOD) samples.
Igeood applies to any pre-trained neural network, works under various degrees of access to the machine learning model.
We show that Igeood outperforms competing state-of-the-art methods on a variety of network architectures and datasets.
arXiv Detail & Related papers (2022-03-15T11:26:35Z) - On the Impact of Spurious Correlation for Out-of-distribution Detection [14.186776881154127]
We present a new formalization and model the data shifts by taking into account both the invariant and environmental features.
Our results suggest that the detection performance is severely worsened when the correlation between spurious features and labels is increased in the training set.
arXiv Detail & Related papers (2021-09-12T23:58:17Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.