Shotluck Holmes: A Family of Efficient Small-Scale Large Language Vision Models For Video Captioning and Summarization
- URL: http://arxiv.org/abs/2405.20648v2
- Date: Mon, 21 Oct 2024 08:52:10 GMT
- Title: Shotluck Holmes: A Family of Efficient Small-Scale Large Language Vision Models For Video Captioning and Summarization
- Authors: Richard Luo, Austin Peng, Adithya Vasudev, Rishabh Jain,
- Abstract summary: We propose a family of efficient large language vision models (LLVMs) to boost video summarization and captioning.
We show that Shotluck Holmes achieves better performance than state-of-the-art results on the Shot2Story video captioning and summary task.
- Score: 2.31529887566247
- License:
- Abstract: Video is an increasingly prominent and information-dense medium, yet it poses substantial challenges for language models. A typical video consists of a sequence of shorter segments, or shots, that collectively form a coherent narrative. Each shot is analogous to a word in a sentence where multiple data streams of information (such as visual and auditory data) must be processed simultaneously. Comprehension of the entire video requires not only understanding the visual-audio information of each shot but also requires that the model links the ideas between each shot to generate a larger, all-encompassing story. Despite significant progress in the field, current works often overlook videos' more granular shot-by-shot semantic information. In this project, we propose a family of efficient large language vision models (LLVMs) to boost video summarization and captioning called Shotluck Holmes. By leveraging better pretraining and data collection strategies, we extend the abilities of existing small LLVMs from being able to understand a picture to being able to understand a sequence of frames. Specifically, we show that Shotluck Holmes achieves better performance than state-of-the-art results on the Shot2Story video captioning and summary task with significantly smaller and more computationally efficient models.
Related papers
- Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning [71.94122309290537]
We propose an efficient, online approach to generate dense captions for videos.
Our model uses a novel autoregressive factorized decoding architecture.
Our approach shows excellent performance compared to both offline and online methods, and uses 20% less compute.
arXiv Detail & Related papers (2024-11-22T02:46:44Z) - Shot2Story20K: A New Benchmark for Comprehensive Understanding of
Multi-shot Videos [58.13927287437394]
We present a new multi-shot video understanding benchmark Shot2Story20K with detailed shot-level captions and comprehensive video summaries.
Preliminary experiments show some challenges to generate a long and comprehensive video summary.
arXiv Detail & Related papers (2023-12-16T03:17:30Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - Spoken Moments: Learning Joint Audio-Visual Representations from Video
Descriptions [75.77044856100349]
We present the Spoken Moments dataset of 500k spoken captions each attributed to a unique short video depicting a broad range of different events.
We show that our AMM approach consistently improves our results and that models trained on our Spoken Moments dataset generalize better than those trained on other video-caption datasets.
arXiv Detail & Related papers (2021-05-10T16:30:46Z) - Comprehensive Information Integration Modeling Framework for Video
Titling [124.11296128308396]
We integrate comprehensive sources of information, including the content of consumer-generated videos, the narrative comment sentences supplied by consumers, and the product attributes, in an end-to-end modeling framework.
To tackle this issue, the proposed method consists of two processes, i.e., granular-level interaction modeling and abstraction-level story-line summarization.
We collect a large-scale dataset accordingly from real-world data in Taobao, a world-leading e-commerce platform.
arXiv Detail & Related papers (2020-06-24T10:38:15Z) - Video Understanding as Machine Translation [53.59298393079866]
We tackle a wide variety of downstream video understanding tasks by means of a single unified framework.
We report performance gains over the state-of-the-art on several downstream tasks including video classification (EPIC-Kitchens), question answering (TVQA), captioning (TVC, YouCook2, and MSR-VTT)
arXiv Detail & Related papers (2020-06-12T14:07:04Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.