Mind the Inconspicuous: Revealing the Hidden Weakness in Aligned LLMs' Refusal Boundaries
- URL: http://arxiv.org/abs/2405.20653v3
- Date: Tue, 17 Jun 2025 03:03:45 GMT
- Title: Mind the Inconspicuous: Revealing the Hidden Weakness in Aligned LLMs' Refusal Boundaries
- Authors: Jiahao Yu, Haozheng Luo, Jerry Yao-Chieh Hu, Wenbo Guo, Han Liu, Xinyu Xing,
- Abstract summary: We find that simply appending multiple end of sequence (eos) tokens can cause a phenomenon we call context segmentation.<n>We propose a straightforward method to BOOST jailbreak attacks by appending eos tokens.
- Score: 22.24239212756129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Large Language Models (LLMs) have led to impressive alignment where models learn to distinguish harmful from harmless queries through supervised finetuning (SFT) and reinforcement learning from human feedback (RLHF). In this paper, we reveal a subtle yet impactful weakness in these aligned models. We find that simply appending multiple end of sequence (eos) tokens can cause a phenomenon we call context segmentation, which effectively shifts both harmful and benign inputs closer to the refusal boundary in the hidden space. Building on this observation, we propose a straightforward method to BOOST jailbreak attacks by appending eos tokens. Our systematic evaluation shows that this strategy significantly increases the attack success rate across 8 representative jailbreak techniques and 16 open-source LLMs, ranging from 2B to 72B parameters. Moreover, we develop a novel probing mechanism for commercial APIs and discover that major providers such as OpenAI, Anthropic, and Qwen do not filter eos tokens, making them similarly vulnerable. These findings highlight a hidden yet critical blind spot in existing alignment and content filtering approaches. We call for heightened attention to eos tokens' unintended influence on model behaviors, particularly in production systems. Our work not only calls for an input-filtering based defense, but also points to new defenses that make refusal boundaries more robust and generalizable, as well as fundamental alignment techniques that can defend against context segmentation attacks.
Related papers
- Stronger Enforcement of Instruction Hierarchy via Augmented Intermediate Representations [10.746349111023964]
We introduce a novel approach that injects the IH signal into the intermediate token representations within the network.<n>Our method augments these representations with layer-specific trainable embeddings that encode the privilege information.<n>Our evaluations across multiple models and training methods reveal that our proposal yields between $1.6times$ and $9.2times$ reduction in attack success rate.
arXiv Detail & Related papers (2025-05-25T00:01:39Z) - Wolf Hidden in Sheep's Conversations: Toward Harmless Data-Based Backdoor Attacks for Jailbreaking Large Language Models [69.11679786018206]
Supervised fine-tuning (SFT) aligns large language models with human intent by training them on labeled task-specific data.<n>Recent studies have shown that malicious attackers can inject backdoors into these models by embedding triggers into the harmful question-answer pairs.<n>We propose a novel clean-data backdoor attack for jailbreaking LLMs.
arXiv Detail & Related papers (2025-05-23T08:13:59Z) - One Trigger Token Is Enough: A Defense Strategy for Balancing Safety and Usability in Large Language Models [20.42976162135529]
Large Language Models (LLMs) have been extensively used across diverse domains, including virtual assistants, automated code generation, and scientific research.<n>We propose textttD-STT, a simple yet effective defense algorithm that identifies and explicitly decodes safety trigger tokens of the given safety-aligned LLM.
arXiv Detail & Related papers (2025-05-12T01:26:50Z) - Feature-Aware Malicious Output Detection and Mitigation [8.378272216429954]
We propose a feature-aware method for harmful response rejection (FMM)<n>FMM detects the presence of malicious features within the model's feature space and adaptively adjusts the model's rejection mechanism.<n> Experimental results demonstrate the effectiveness of our approach across multiple language models and diverse attack techniques.
arXiv Detail & Related papers (2025-04-12T12:12:51Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks.<n>We propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge.
arXiv Detail & Related papers (2025-03-05T18:01:05Z) - Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction [32.04296423547049]
Large Language Models (LLMs) are widely applied in various domains.
We propose the Rewrite to Jailbreak (R2J) approach, a transferable black-box jailbreak method to attack LLMs.
arXiv Detail & Related papers (2025-02-16T11:43:39Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Token Highlighter: Inspecting and Mitigating Jailbreak Prompts for Large Language Models [61.916827858666906]
Large Language Models (LLMs) are increasingly being integrated into services such as ChatGPT to provide responses to user queries.
This paper proposes a method called Token Highlighter to inspect and mitigate the potential jailbreak threats in the user query.
arXiv Detail & Related papers (2024-12-24T05:10:02Z) - SQL Injection Jailbreak: a structural disaster of large language models [71.55108680517422]
We propose a novel jailbreak method, which utilizes the construction of input prompts by LLMs to inject jailbreak information into user prompts.
Our SIJ method achieves nearly 100% attack success rates on five well-known open-source LLMs in the context of AdvBench.
arXiv Detail & Related papers (2024-11-03T13:36:34Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - You Know What I'm Saying: Jailbreak Attack via Implicit Reference [22.520950422702757]
This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR)
AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context.
Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models.
arXiv Detail & Related papers (2024-10-04T18:42:57Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Towards Understanding Jailbreak Attacks in LLMs: A Representation Space Analysis [47.81417828399084]
Large language models (LLMs) are susceptible to a type of attack known as jailbreaking, which misleads LLMs to output harmful contents.
This paper explores the behavior of harmful and harmless prompts in the LLM's representation space to investigate the intrinsic properties of successful jailbreak attacks.
arXiv Detail & Related papers (2024-06-16T03:38:48Z) - LLMs Can Defend Themselves Against Jailbreaking in a Practical Manner: A
Vision Paper [16.078682415975337]
Jailbreaking is an emerging adversarial attack that bypasses the safety alignment deployed in off-the-shelf large language models (LLMs)
This paper proposes a lightweight yet practical defense called SELFDEFEND.
It can defend against all existing jailbreak attacks with minimal delay for jailbreak prompts and negligible delay for normal user prompts.
arXiv Detail & Related papers (2024-02-24T05:34:43Z) - SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware Decoding [35.750885132167504]
We introduce SafeDecoding, a safety-aware decoding strategy for large language models (LLMs) to generate helpful and harmless responses to user queries.
Our results show that SafeDecoding significantly reduces the attack success rate and harmfulness of jailbreak attacks without compromising the helpfulness of responses to benign user queries.
arXiv Detail & Related papers (2024-02-14T06:54:31Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z) - Analyzing the Inherent Response Tendency of LLMs: Real-World
Instructions-Driven Jailbreak [26.741029482196534]
"Jailbreak Attack" is phenomenon where Large Language Models (LLMs) generate harmful responses when faced with malicious instructions.
We introduce a novel automatic jailbreak method RADIAL, which bypasses the security mechanism by amplifying the potential of LLMs to generate affirmation responses.
Our method achieves excellent attack performance on English malicious instructions with five open-source advanced LLMs while maintaining robust attack performance in executing cross-language attacks against Chinese malicious instructions.
arXiv Detail & Related papers (2023-12-07T08:29:58Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.