You Know What I'm Saying: Jailbreak Attack via Implicit Reference
- URL: http://arxiv.org/abs/2410.03857v2
- Date: Tue, 8 Oct 2024 08:34:38 GMT
- Title: You Know What I'm Saying: Jailbreak Attack via Implicit Reference
- Authors: Tianyu Wu, Lingrui Mei, Ruibin Yuan, Lujun Li, Wei Xue, Yike Guo,
- Abstract summary: This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR)
AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context.
Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models.
- Score: 22.520950422702757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives. This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR). AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context. This method employs multiple related harmless objectives to generate malicious content without triggering refusal responses, thereby effectively bypassing existing detection techniques.Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models, including GPT-4o, Claude-3.5-Sonnet, and Qwen-2-72B. Notably, we observe an inverse scaling phenomenon, where larger models are more vulnerable to this attack method. These findings underscore the urgent need for defense mechanisms capable of understanding and preventing contextual attacks. Furthermore, we introduce a cross-model attack strategy that leverages less secure models to generate malicious contexts, thereby further increasing the ASR when targeting other models.Our code and jailbreak artifacts can be found at https://github.com/Lucas-TY/llm_Implicit_reference.
Related papers
- A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
In this work, we propose a unified threat model for the principled comparison of jailbreak attacks.
Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text.
We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing.
arXiv Detail & Related papers (2024-10-21T17:27:01Z) - Imposter.AI: Adversarial Attacks with Hidden Intentions towards Aligned Large Language Models [13.225041704917905]
This study unveils an attack mechanism that capitalizes on human conversation strategies to extract harmful information from large language models.
Unlike conventional methods that target explicit malicious responses, our approach delves deeper into the nature of the information provided in responses.
arXiv Detail & Related papers (2024-07-22T06:04:29Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.
This paper presents an innovative defensive strategy, given white box access to an LLM.
We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.
We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.
We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - Mitigating Label Flipping Attacks in Malicious URL Detectors Using
Ensemble Trees [16.16333915007336]
Malicious URLs provide adversarial opportunities across various industries, including transportation, healthcare, energy, and banking.
backdoor attacks involve manipulating a small percentage of training data labels, such as Label Flipping (LF), which changes benign labels to malicious ones and vice versa.
We propose an innovative alarm system that detects the presence of poisoned labels and a defense mechanism designed to uncover the original class labels.
arXiv Detail & Related papers (2024-03-05T14:21:57Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Hijacking Large Language Models via Adversarial In-Context Learning [8.15194326639149]
In-context learning (ICL) has emerged as a powerful paradigm leveraging LLMs for specific downstream tasks.
Existing attacks are either easy to detect, rely on external models, or lack specificity towards ICL.
This work introduces a novel transferable attack against ICL to address these issues.
arXiv Detail & Related papers (2023-11-16T15:01:48Z) - Object-fabrication Targeted Attack for Object Detection [54.10697546734503]
adversarial attack for object detection contains targeted attack and untargeted attack.
New object-fabrication targeted attack mode can mislead detectors tofabricate extra false objects with specific target labels.
arXiv Detail & Related papers (2022-12-13T08:42:39Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.