Directly Estimating Mixed-State Entanglement with Bell Measurement Assistance
- URL: http://arxiv.org/abs/2405.20696v2
- Date: Sat, 6 Jul 2024 05:38:46 GMT
- Title: Directly Estimating Mixed-State Entanglement with Bell Measurement Assistance
- Authors: Gong-Chu Li, Lei Chen, Si-Qi Zhang, Xu-Song Hong, You Zhou, Geng Chen, Chuan-Feng Li, Guang-Can Guo,
- Abstract summary: Entanglement plays a fundamental role in quantum physics and information processing.
We develop an unbiased estimator for mixed-state entanglement in the few-shot scenario and directly estimate it using random unitary evolution in a photonic system.
- Score: 7.314117670864291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement plays a fundamental role in quantum physics and information processing. Here, we develop an unbiased estimator for mixed-state entanglement in the few-shot scenario and directly estimate it using random unitary evolution in a photonic system. As a supplement to traditional projective measurements, we incorporate Bell measurements on qubit-pairs, enriching the previous randomized measurement scheme, which is no-go in this task with only local unitary evolution. The scheme is scalable to n-qubits via Bell measurements on qubit-pairs. The estimator can be derived directly from a few consecutive outcomes while exhibiting greater robustness to system errors and noise compared to schemes based on shadow estimation. We find that, under a fixed measurement resource, the way with more versatile measurement settings with fewer repeats per setting is more efficient. Our protocol and demonstration advance the direct characterization of quantum states in practice.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Noise-mitigated randomized measurements and self-calibrating shadow
estimation [0.0]
We introduce an error-mitigated method of randomized measurements, giving rise to a robust shadow estimation procedure.
On the practical side, we show that error mitigation and shadow estimation can be carried out using the same session of quantum experiments.
arXiv Detail & Related papers (2024-03-07T18:53:56Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Generic eigenstate preparation via measurement-based purification [0.0]
We discuss the measurement-based entanglement purification by which maximally entangled states can be distilled.
We demonstrate the significant acceleration of a stimulated Raman adiabatic passage assisted by similar measurements.
Our scheme allows arbitrary eigenstate preparation and reveals efficiency in multipartite systems for subspace purification.
arXiv Detail & Related papers (2023-07-31T08:46:59Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Estimating Quantum Hamiltonians via Joint Measurements of Noisy
Non-Commuting Observables [0.0]
We introduce a method for performing a single joint measurement that can be implemented locally.
We derive bounds on the number of experimental repetitions required to estimate energies up to a certain precision.
We adapt the joint measurement strategy to minimise the sample complexity when the implementation of measurements is assumed noisy.
arXiv Detail & Related papers (2022-06-17T17:42:54Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Adaptive estimation of quantum observables [4.567122178196833]
We introduce a measurement scheme that adaptively modifies the estimator based on previously obtained data.
Our algorithm, which we call AEQuO, continuously monitors both the estimated average and the associated error of the considered observable.
We test our protocol on chemistry Hamiltonians, for which AEQuO provides error estimates that improve on all state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T17:49:16Z) - Entanglement-Preserving Limit Cycles from Sequential Quantum
Measurements and Feedback [0.0]
Entanglement generation and preservation is a key task in quantum information processing.
We propose feedback methods to increase the yield and/or lifetime of entangled two-qubit states.
arXiv Detail & Related papers (2020-03-05T22:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.