Optimal Allocation of Pauli Measurements for Low-rank Quantum State Tomography
- URL: http://arxiv.org/abs/2411.04452v1
- Date: Thu, 07 Nov 2024 05:59:04 GMT
- Title: Optimal Allocation of Pauli Measurements for Low-rank Quantum State Tomography
- Authors: Zhen Qin, Casey Jameson, Zhexuan Gong, Michael B. Wakin, Zhihui Zhu,
- Abstract summary: A key challenge of quantum state tomography (QST) is to find out how the accuracy of the reconstruction depends on the number of state copies used in the measurements.
We establish a theoretical understanding of the trade-off between the number of measurement settings and the number of repeated measurements per setting in QST.
- Score: 26.844092519401617
- License:
- Abstract: The process of reconstructing quantum states from experimental measurements, accomplished through quantum state tomography (QST), plays a crucial role in verifying and benchmarking quantum devices. A key challenge of QST is to find out how the accuracy of the reconstruction depends on the number of state copies used in the measurements. When multiple measurement settings are used, the total number of state copies is determined by multiplying the number of measurement settings with the number of repeated measurements for each setting. Due to statistical noise intrinsic to quantum measurements, a large number of repeated measurements is often used in practice. However, recent studies have shown that even with single-sample measurements--where only one measurement sample is obtained for each measurement setting--high accuracy QST can still be achieved with a sufficiently large number of different measurement settings. In this paper, we establish a theoretical understanding of the trade-off between the number of measurement settings and the number of repeated measurements per setting in QST. Our focus is primarily on low-rank density matrix recovery using Pauli measurements. We delve into the global landscape underlying the low-rank QST problem and demonstrate that the joint consideration of measurement settings and repeated measurements ensures a bounded recovery error for all second-order critical points, to which optimization algorithms tend to converge. This finding suggests the advantage of minimizing the number of repeated measurements per setting when the total number of state copies is held fixed. Additionally, we prove that the Wirtinger gradient descent algorithm can converge to the region of second-order critical points with a linear convergence rate. We have also performed numerical experiments to support our theoretical findings.
Related papers
- Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Early Fault-Tolerant Quantum Algorithms in Practice: Application to Ground-State Energy Estimation [39.20075231137991]
We address the computation of the cumulative distribution function (CDF) of the spectral measure of the Hamiltonian.
We introduce a signal processing technique for identifying the inflection point of the CDF.
We conduct numerical experiments on a 26-qubit fully-connected Heisenberg model using a truncated density-matrix renormalization group (DMRG) initial state of low bond dimension.
arXiv Detail & Related papers (2024-05-06T18:00:03Z) - Cyclic measurements and simplified quantum state tomography [0.0]
We introduce the notion of cyclic tight measurements, that allow us to perform full quantum state tomography.
This type of measurements significantly simplifies the complexity of the experimental setup required to retrieve the quantum state of a physical system.
arXiv Detail & Related papers (2024-04-29T16:41:17Z) - A Tailor-made Quantum State Tomography Approach [0.0]
Quantum state tomography aims at reconstructing the state of a quantum system.
In conventional QST the number of measurements scales exponentially with the number of qubits.
We propose a protocol in which the introduction of a threshold allows one to drastically reduce the number of measurements required.
arXiv Detail & Related papers (2024-01-23T15:56:12Z) - Learning Informative Latent Representation for Quantum State Tomography [18.19768367431327]
Quantum state tomography (QST) is the process of reconstructing the complete state of a quantum system.
Recent advances in deep neural networks (DNNs) led to the emergence of deep learning (DL) in QST.
We propose a transformer-based autoencoder architecture tailored for QST with imperfect measurement data.
arXiv Detail & Related papers (2023-09-30T22:37:28Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Pure state tomography with parallel unentangled measurements [0.9746724603067647]
We focus on the QST of a pure quantum state using parallel unentangled measurements.
We propose two sets of quantum measurements that one can make on a pure state as well as the algorithms that use the measurements outcomes in order to identify the state.
arXiv Detail & Related papers (2022-08-08T09:49:55Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.