Power of Cooperative Supervision: Multiple Teachers Framework for Enhanced 3D Semi-Supervised Object Detection
- URL: http://arxiv.org/abs/2405.20720v1
- Date: Fri, 31 May 2024 09:23:25 GMT
- Title: Power of Cooperative Supervision: Multiple Teachers Framework for Enhanced 3D Semi-Supervised Object Detection
- Authors: Jin-Hee Lee, Jae-Keun Lee, Je-Seok Kim, Soon Kwon,
- Abstract summary: We have constructed a multi-class 3D LiDAR dataset reflecting diverse urban environments and object characteristics.
We developed a robust 3D semi-supervised object detection (SSOD) based on a multiple teachers framework.
We plan to release our multi-class LiDAR dataset and the source code available on our Github repository.
- Score: 0.7499722271664147
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To ensure safe urban driving for autonomous platforms, it is crucial not only to develop high-performance object detection techniques but also to establish a diverse and representative dataset that captures various urban environments and object characteristics. To address these two issues, we have constructed a multi-class 3D LiDAR dataset reflecting diverse urban environments and object characteristics, and developed a robust 3D semi-supervised object detection (SSOD) based on a multiple teachers framework. This SSOD framework categorizes similar classes and assigns specialized teachers to each category. Through collaborative supervision among these category-specialized teachers, the student network becomes increasingly proficient, leading to a highly effective object detector. We propose a simple yet effective augmentation technique, Pie-based Point Compensating Augmentation (PieAug), to enable the teacher network to generate high-quality pseudo-labels. Extensive experiments on the WOD, KITTI, and our datasets validate the effectiveness of our proposed method and the quality of our dataset. Experimental results demonstrate that our approach consistently outperforms existing state-of-the-art 3D semi-supervised object detection methods across all datasets. We plan to release our multi-class LiDAR dataset and the source code available on our Github repository in the near future.
Related papers
- Reflective Teacher: Semi-Supervised Multimodal 3D Object Detection in Bird's-Eye-View via Uncertainty Measure [5.510678909146336]
We introduce a novel concept of Reflective Teacher where the student is trained by both labeled and pseudo labeled data.
We also propose Geometry Aware BEV Fusion (GA-BEV) for efficient alignment of multi-modal BEV features.
arXiv Detail & Related papers (2024-12-05T16:54:39Z) - A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision [65.33043028101471]
We introduce a diffusion model for Gaussian Splats, SplatDiffusion, to enable generation of three-dimensional structures from single images.
Existing methods rely on deterministic, feed-forward predictions, which limit their ability to handle the inherent ambiguity of 3D inference from 2D data.
arXiv Detail & Related papers (2024-12-01T00:29:57Z) - Semi-Supervised 3D Object Detection with Channel Augmentation using Transformation Equivariance [25.068639796096434]
We explore a novel teacher-student framework employing channel augmentation for 3D semi-supervised object detection.
In principle, by adopting fixed channel augmentations for the teacher network, the student can train stably on reliable pseudo-labels.
We evaluate our method with KITTI dataset, and achieved a significant performance leap, surpassing SOTA 3D semi-supervised object detection models.
arXiv Detail & Related papers (2024-09-10T15:22:05Z) - Weak-to-Strong 3D Object Detection with X-Ray Distillation [75.47580744933724]
We propose a versatile technique that seamlessly integrates into any existing framework for 3D Object Detection.
X-Ray Distillation with Object-Complete Frames is suitable for both supervised and semi-supervised settings.
Our proposed methods surpass state-of-the-art in semi-supervised learning by 1-1.5 mAP.
arXiv Detail & Related papers (2024-03-31T13:09:06Z) - Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
We present a novel Dual-Perspective Knowledge Enrichment approach named DPKE for semi-supervised 3D object detection.
Our DPKE enriches the knowledge of limited training data, particularly unlabeled data, from two perspectives: data-perspective and feature-perspective.
arXiv Detail & Related papers (2024-01-10T08:56:07Z) - ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training.
By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points.
Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised.
arXiv Detail & Related papers (2023-10-28T07:12:09Z) - Every Dataset Counts: Scaling up Monocular 3D Object Detection with Joint Datasets Training [9.272389295055271]
This study investigates the pipeline for training a monocular 3D object detection model on a diverse collection of 3D and 2D datasets.
The proposed framework comprises three components: (1) a robust monocular 3D model capable of functioning across various camera settings, (2) a selective-training strategy to accommodate datasets with differing class annotations, and (3) a pseudo 3D training approach using 2D labels to enhance detection performance in scenes containing only 2D labels.
arXiv Detail & Related papers (2023-10-02T06:17:24Z) - Hierarchical Supervision and Shuffle Data Augmentation for 3D
Semi-Supervised Object Detection [90.32180043449263]
State-of-the-art 3D object detectors are usually trained on large-scale datasets with high-quality 3D annotations.
A natural remedy is to adopt semi-supervised learning (SSL) by leveraging a limited amount of labeled samples and abundant unlabeled samples.
This paper introduces a novel approach of Hierarchical Supervision and Shuffle Data Augmentation (HSSDA), which is a simple yet effective teacher-student framework.
arXiv Detail & Related papers (2023-04-04T02:09:32Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.