Reflective Teacher: Semi-Supervised Multimodal 3D Object Detection in Bird's-Eye-View via Uncertainty Measure
- URL: http://arxiv.org/abs/2412.04337v1
- Date: Thu, 05 Dec 2024 16:54:39 GMT
- Title: Reflective Teacher: Semi-Supervised Multimodal 3D Object Detection in Bird's-Eye-View via Uncertainty Measure
- Authors: Saheli Hazra, Sudip Das, Rohit Choudhary, Arindam Das, Ganesh Sistu, Ciaran Eising, Ujjwal Bhattacharya,
- Abstract summary: We introduce a novel concept of Reflective Teacher where the student is trained by both labeled and pseudo labeled data.
We also propose Geometry Aware BEV Fusion (GA-BEV) for efficient alignment of multi-modal BEV features.
- Score: 5.510678909146336
- License:
- Abstract: Applying pseudo labeling techniques has been found to be advantageous in semi-supervised 3D object detection (SSOD) in Bird's-Eye-View (BEV) for autonomous driving, particularly where labeled data is limited. In the literature, Exponential Moving Average (EMA) has been used for adjustments of the weights of teacher network by the student network. However, the same induces catastrophic forgetting in the teacher network. In this work, we address this issue by introducing a novel concept of Reflective Teacher where the student is trained by both labeled and pseudo labeled data while its knowledge is progressively passed to the teacher through a regularizer to ensure retention of previous knowledge. Additionally, we propose Geometry Aware BEV Fusion (GA-BEVFusion) for efficient alignment of multi-modal BEV features, thus reducing the disparity between the modalities - camera and LiDAR. This helps to map the precise geometric information embedded among LiDAR points reliably with the spatial priors for extraction of semantic information from camera images. Our experiments on the nuScenes and Waymo datasets demonstrate: 1) improved performance over state-of-the-art methods in both fully supervised and semi-supervised settings; 2) Reflective Teacher achieves equivalent performance with only 25% and 22% of labeled data for nuScenes and Waymo datasets respectively, in contrast to other fully supervised methods that utilize the full labeled dataset.
Related papers
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - Power of Cooperative Supervision: Multiple Teachers Framework for Enhanced 3D Semi-Supervised Object Detection [0.7499722271664147]
We have constructed a multi-class 3D LiDAR dataset reflecting diverse urban environments and object characteristics.
We developed a robust 3D semi-supervised object detection (SSOD) based on a multiple teachers framework.
We plan to release our multi-class LiDAR dataset and the source code available on our Github repository.
arXiv Detail & Related papers (2024-05-31T09:23:25Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
We introduce LaserMix++, a framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to assist data-efficient learning.
Results demonstrate that LaserMix++ outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations.
This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
arXiv Detail & Related papers (2024-05-08T17:59:53Z) - Weak-to-Strong 3D Object Detection with X-Ray Distillation [75.47580744933724]
We propose a versatile technique that seamlessly integrates into any existing framework for 3D Object Detection.
X-Ray Distillation with Object-Complete Frames is suitable for both supervised and semi-supervised settings.
Our proposed methods surpass state-of-the-art in semi-supervised learning by 1-1.5 mAP.
arXiv Detail & Related papers (2024-03-31T13:09:06Z) - Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
We present a novel Dual-Perspective Knowledge Enrichment approach named DPKE for semi-supervised 3D object detection.
Our DPKE enriches the knowledge of limited training data, particularly unlabeled data, from two perspectives: data-perspective and feature-perspective.
arXiv Detail & Related papers (2024-01-10T08:56:07Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training.
By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points.
Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised.
arXiv Detail & Related papers (2023-10-28T07:12:09Z) - DistillBEV: Boosting Multi-Camera 3D Object Detection with Cross-Modal
Knowledge Distillation [25.933070263556374]
3D perception based on representations learned from multi-camera bird's-eye-view (BEV) is trending as cameras are cost-effective for mass production in autonomous driving industry.
There exists a distinct performance gap between multi-camera BEV and LiDAR based 3D object detection.
We propose to boost the representation learning of a multi-camera BEV based student detector by training it to imitate the features of a well-trained LiDAR based teacher detector.
arXiv Detail & Related papers (2023-09-26T17:56:21Z) - Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active
Learning [2.16117348324501]
We propose a novel semi-supervised active learning (SSAL) framework for monocular 3D object detection with LiDAR guidance (MonoLiG)
We utilize LiDAR to guide the data selection and training of monocular 3D detectors without introducing any overhead in the inference phase.
Our training strategy attains the top place in KITTI 3D and birds-eye-view (BEV) monocular object detection official benchmarks by improving the BEV Average Precision (AP) by 2.02.
arXiv Detail & Related papers (2023-07-17T11:55:27Z) - Hierarchical Supervision and Shuffle Data Augmentation for 3D
Semi-Supervised Object Detection [90.32180043449263]
State-of-the-art 3D object detectors are usually trained on large-scale datasets with high-quality 3D annotations.
A natural remedy is to adopt semi-supervised learning (SSL) by leveraging a limited amount of labeled samples and abundant unlabeled samples.
This paper introduces a novel approach of Hierarchical Supervision and Shuffle Data Augmentation (HSSDA), which is a simple yet effective teacher-student framework.
arXiv Detail & Related papers (2023-04-04T02:09:32Z) - DetMatch: Two Teachers are Better Than One for Joint 2D and 3D
Semi-Supervised Object Detection [29.722784254501768]
DetMatch is a flexible framework for joint semi-supervised learning on 2D and 3D modalities.
By identifying objects detected in both sensors, our pipeline generates a cleaner, more robust set of pseudo-labels.
We leverage the richer semantics of RGB images to rectify incorrect 3D class predictions and improve localization of 3D boxes.
arXiv Detail & Related papers (2022-03-17T17:58:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.