GI-NAS: Boosting Gradient Inversion Attacks through Adaptive Neural Architecture Search
- URL: http://arxiv.org/abs/2405.20725v2
- Date: Fri, 25 Oct 2024 09:26:49 GMT
- Title: GI-NAS: Boosting Gradient Inversion Attacks through Adaptive Neural Architecture Search
- Authors: Wenbo Yu, Hao Fang, Bin Chen, Xiaohang Sui, Chuan Chen, Hao Wu, Shu-Tao Xia, Ke Xu,
- Abstract summary: Gradient Inversion Attacks invert the transmitted gradients in Federated Learning (FL) systems to reconstruct the sensitive data of local clients.
A majority of gradient inversion methods rely heavily on explicit prior knowledge, which is often unavailable in realistic scenarios.
We propose Neural Architecture Search (GI-NAS), which adaptively searches the network and captures the implicit priors behind neural architectures.
- Score: 45.57494859267399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient Inversion Attacks invert the transmitted gradients in Federated Learning (FL) systems to reconstruct the sensitive data of local clients and have raised considerable privacy concerns. A majority of gradient inversion methods rely heavily on explicit prior knowledge (e.g., a well pre-trained generative model), which is often unavailable in realistic scenarios. To alleviate this issue, researchers have proposed to leverage the implicit prior knowledge of an over-parameterized network. However, they only utilize a fixed neural architecture for all the attack settings. This would hinder the adaptive use of implicit architectural priors and consequently limit the generalizability. In this paper, we further exploit such implicit prior knowledge by proposing Gradient Inversion via Neural Architecture Search (GI-NAS), which adaptively searches the network and captures the implicit priors behind neural architectures. Extensive experiments verify that our proposed GI-NAS can achieve superior attack performance compared to state-of-the-art gradient inversion methods, even under more practical settings with high-resolution images, large-sized batches, and advanced defense strategies.
Related papers
- Fast and Slow Gradient Approximation for Binary Neural Network Optimization [11.064044986709733]
hypernetwork based methods utilize neural networks to learn the gradients of non-differentiable quantization functions.
We propose a Historical Gradient Storage (HGS) module, which models the historical gradient sequence to generate the first-order momentum required for optimization.
We also introduce Layer Recognition Embeddings (LRE) into the hypernetwork, facilitating the generation of layer-specific fine gradients.
arXiv Detail & Related papers (2024-12-16T13:48:40Z) - Extracting Spatiotemporal Data from Gradients with Large Language Models [30.785476975412482]
Recent updates that can be updated from gradient data break key privacy promise of federated learning.
We propose an adaptive defense strategy to mitigate attacks in federated learning.
We show that the proposed defense strategy can well preserve the utility of thetemporal-temporal federated learning with effective security protection.
arXiv Detail & Related papers (2024-10-21T15:48:34Z) - GI-SMN: Gradient Inversion Attack against Federated Learning without Prior Knowledge [4.839514405631815]
Federated learning (FL) has emerged as a privacy-preserving machine learning approach.
gradient inversion attacks can exploit the gradients of FL to recreate the original user data.
We propose a novel Gradient Inversion attack based on Style Migration Network (GI-SMN)
arXiv Detail & Related papers (2024-05-06T14:29:24Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Backward Gradient Normalization in Deep Neural Networks [68.8204255655161]
We introduce a new technique for gradient normalization during neural network training.
The gradients are rescaled during the backward pass using normalization layers introduced at certain points within the network architecture.
Results on tests with very deep neural networks show that the new technique can do an effective control of the gradient norm.
arXiv Detail & Related papers (2021-06-17T13:24:43Z) - GradInit: Learning to Initialize Neural Networks for Stable and
Efficient Training [59.160154997555956]
We present GradInit, an automated and architecture method for initializing neural networks.
It is based on a simple agnostic; the variance of each network layer is adjusted so that a single step of SGD or Adam results in the smallest possible loss value.
It also enables training the original Post-LN Transformer for machine translation without learning rate warmup.
arXiv Detail & Related papers (2021-02-16T11:45:35Z) - Improving Neural Network Robustness through Neighborhood Preserving
Layers [0.751016548830037]
We demonstrate a novel neural network architecture which can incorporate such layers and also can be trained efficiently.
We empirically show that our designed network architecture is more robust against state-of-art gradient descent based attacks.
arXiv Detail & Related papers (2021-01-28T01:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.