論文の概要: Towards Black-Box Membership Inference Attack for Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.20771v2
- Date: Tue, 26 Nov 2024 05:05:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:29.688884
- Title: Towards Black-Box Membership Inference Attack for Diffusion Models
- Title(参考訳): 拡散モデルに対するブラックボックスメンバーシップ推論攻撃に向けて
- Authors: Jingwei Li, Jing Dong, Tianxing He, Jingzhao Zhang,
- Abstract要約: 本稿では,イメージ・ツー・イメージ・バラツキAPIのみを用いた新たなメンバシップ推論攻撃手法を提案する。
私たちのアプローチでは、サンプルがトレーニングセットの一部であったかどうかを分類することができます。
実験結果は従来手法より一貫して優れていた。
- 参考スコア(独自算出の注目度): 20.23161244284985
- License:
- Abstract: Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
- Abstract(参考訳): AI生成技術の普及と関連する著作権問題を考えると、拡散モデルのトレーニングにアートワークが使用されたかどうかが重要な研究トピックである。
この研究は、メンバーシップ推論攻撃(MIA)の観点からこの問題にアプローチする。
まず,既存のMIA手法を独自拡散モデルに適用することの限界を同定する。
上記の問題に対処するために,画像間変動APIのみを使用し,モデルの内部U-netにアクセスすることなく動作する新しいメンバシップ推論攻撃手法を提案する。
本手法は,トレーニングセットから画像に対する偏りのない雑音予測を,モデルがより容易に得るという直感に基づいている。
対象画像にAPIを複数回適用し、出力を平均化し、その結果を元の画像と比較することにより、サンプルがトレーニングセットの一部であったかどうかを分類できる。
DDIMとStable Diffusionのセットアップを用いて本手法を検証し,Diffusion Transformerアーキテクチャにアプローチと既存アルゴリズムを拡張した。
実験結果は従来手法より一貫して優れていた。
関連論文リスト
- Generalizable Origin Identification for Text-Guided Image-to-Image Diffusion Models [39.234894330025114]
テキストインプロンプトに基づく画像の翻訳において,テキスト誘導画像から画像への拡散モデルが優れている。
これは、テキスト誘導画像-画像拡散モデル(ID$2$)の原点識別タスクの導入を動機付けます。
ID$2$の直接的な解決策は、クエリと参照イメージの両方から機能を抽出し比較するために、特別なディープ埋め込みモデルをトレーニングすることである。
論文 参考訳(メタデータ) (2025-01-04T20:34:53Z) - Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
本稿では,任意の破損型を持つ雑音データから拡散モデルを反復的に学習する,原則的予測最大化(EM)フレームワークを提案する。
筆者らはモンテカルロ法を用いて,ノイズ測定からクリーンな画像を正確に推定し,次いで再構成画像を用いて拡散モデルを訓練した。
論文 参考訳(メタデータ) (2024-10-15T03:54:59Z) - Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
提案手法は,報酬関数やモデル再学習を介さずに,推論時の復調過程を導出するための最適化手法である。
提案手法は,高報酬に対応する領域の密度を最適化することにより,雑音分布の制御を行う。
我々の知る限り、提案手法は拡散モデルに対する最初の推論時間、バックプロパゲーションフリーな選好アライメント法である。
論文 参考訳(メタデータ) (2024-10-08T07:33:49Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
トレーニングメンバーシップ推論(TMI)タスクは、ターゲットモデルのトレーニングプロセスで特定のサンプルが使用されているかどうかを判断することを目的としている。
本稿では,拡散モデル内における本質的な生成先行情報を活用することで,TMIタスクの新たな視点を探求する。
論文 参考訳(メタデータ) (2024-03-13T12:52:37Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - An Efficient Membership Inference Attack for the Diffusion Model by
Proximal Initialization [58.88327181933151]
本稿では,効率的なクエリベースのメンバシップ推論攻撃(MIA)を提案する。
実験結果から,提案手法は離散時間と連続時間の両方の拡散モデル上で,2つのクエリで競合性能を達成できることが示唆された。
我々の知る限り、本研究はテキスト音声タスクにおけるMIAへの拡散モデルのロバスト性について初めて研究するものである。
論文 参考訳(メタデータ) (2023-05-26T16:38:48Z) - UMat: Uncertainty-Aware Single Image High Resolution Material Capture [2.416160525187799]
本研究では, 物体の単一拡散像から正規性, 特異性, 粗さを復元する学習手法を提案する。
本手法は材料デジタル化における不確実性をモデル化する問題に最初に対処する手法である。
論文 参考訳(メタデータ) (2023-05-25T17:59:04Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
拡散モデルは、ログのような目的に近似して訓練される。
本稿では,下流目的のための拡散モデルを直接最適化するための強化学習手法について検討する。
本稿では,多段階決定問題としてデノベーションを行うことによって,ポリシー勾配アルゴリズムのクラスを実現する方法について述べる。
論文 参考訳(メタデータ) (2023-05-22T17:57:41Z) - JPEG Artifact Correction using Denoising Diffusion Restoration Models [110.1244240726802]
本稿では,DDRM(Denoising Diffusion Restoration Models)に基づいて,非線形逆問題の解法を提案する。
我々は、DDRMで使用される擬逆演算子を活用し、この概念を他の測度演算子に一般化する。
論文 参考訳(メタデータ) (2022-09-23T23:47:00Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。