Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach
- URL: http://arxiv.org/abs/2405.20776v1
- Date: Mon, 27 May 2024 04:35:49 GMT
- Title: Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach
- Authors: Xuhan Zuo, Minghao Wang, Tianqing Zhu, Lefeng Zhang, Shui Yu, Wanlei Zhou,
- Abstract summary: We introduce a framework that melds blockchain with federated learning, thereby ensuring an immutable record of unlearning requests and actions.
Our key contributions encompass a certification mechanism for the unlearning process, the enhancement of data security and privacy, and the optimization of data management.
- Score: 20.74679353443655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing need to comply with privacy regulations and respond to user data deletion requests, integrating machine unlearning into IoT-based federated learning has become imperative. Traditional unlearning methods, however, often lack verifiable mechanisms, leading to challenges in establishing trust. This paper delves into the innovative integration of blockchain technology with federated learning to surmount these obstacles. Blockchain fortifies the unlearning process through its inherent qualities of immutability, transparency, and robust security. It facilitates verifiable certification, harmonizes security with privacy, and sustains system efficiency. We introduce a framework that melds blockchain with federated learning, thereby ensuring an immutable record of unlearning requests and actions. This strategy not only bolsters the trustworthiness and integrity of the federated learning model but also adeptly addresses efficiency and security challenges typical in IoT environments. Our key contributions encompass a certification mechanism for the unlearning process, the enhancement of data security and privacy, and the optimization of data management to ensure system responsiveness in IoT scenarios.
Related papers
- Blockchain-enhanced Integrity Verification in Educational Content Assessment Platform: A Lightweight and Cost-Efficient Approach [0.0]
The growing digitization of education presents challenges in maintaining the integrity and trustworthiness of educational content.
Traditional systems fail to ensure data authenticity and prevent unauthorized alterations, particularly in the evaluation of teachers' professional activities.
This paper introduces a-enhanced framework for the Electronic Platform for Expertise of Content (EPEC), a platform used for reviewing and assessing educational materials.
arXiv Detail & Related papers (2024-09-29T23:56:57Z) - Federated TrustChain: Blockchain-Enhanced LLM Training and Unlearning [22.33179965773829]
We propose a novel blockchain-based federated learning framework for Large Language Models (LLMs)
Our framework leverages blockchain technology to create a tamper-proof record of each model's contributions and introduces an innovative unlearning function that seamlessly integrates with the federated learning mechanism.
arXiv Detail & Related papers (2024-06-06T13:44:44Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
Federated Learning (FL) as a distributed machine learning paradigm has introduced new cybersecurity challenges.
This study proposes an innovative security framework inspired by Control-Flow (CFA) mechanisms, traditionally used in cybersecurity.
We authenticate and verify the integrity of model updates across the network, effectively mitigating risks associated with model poisoning and adversarial interference.
arXiv Detail & Related papers (2024-03-15T04:03:34Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
The paper focuses on enhancing the trustworthiness of participating nodes through a trust penalization mechanism.
The proposed system aims to create a fair, secure and transparent environment for collaborative machine learning without compromising data privacy.
arXiv Detail & Related papers (2023-10-30T06:05:50Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - FedBlockHealth: A Synergistic Approach to Privacy and Security in
IoT-Enabled Healthcare through Federated Learning and Blockchain [2.993954417409032]
The rapid adoption of Internet of Things (IoT) devices in healthcare has introduced new challenges in preserving data privacy, security and patient safety.
Traditional approaches need to ensure security and privacy while maintaining computational efficiency.
This paper proposes a novel hybrid approach combining federated learning and blockchain technology to provide a secure and privacy-preserved solution.
arXiv Detail & Related papers (2023-04-16T01:55:31Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) stands out as a promising solution for diverse real-world scenarios.
However, challenges around data isolation and privacy threaten the trustworthiness of FL systems.
arXiv Detail & Related papers (2023-02-21T12:52:12Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.