Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks
- URL: http://arxiv.org/abs/2403.10005v1
- Date: Fri, 15 Mar 2024 04:03:34 GMT
- Title: Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks
- Authors: Zahir Alsulaimawi,
- Abstract summary: Federated Learning (FL) as a distributed machine learning paradigm has introduced new cybersecurity challenges.
This study proposes an innovative security framework inspired by Control-Flow (CFA) mechanisms, traditionally used in cybersecurity.
We authenticate and verify the integrity of model updates across the network, effectively mitigating risks associated with model poisoning and adversarial interference.
- Score: 2.28438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of Federated Learning (FL) as a distributed machine learning paradigm has introduced new cybersecurity challenges, notably adversarial attacks that threaten model integrity and participant privacy. This study proposes an innovative security framework inspired by Control-Flow Attestation (CFA) mechanisms, traditionally used in cybersecurity, to ensure software execution integrity. By integrating digital signatures and cryptographic hashing within the FL framework, we authenticate and verify the integrity of model updates across the network, effectively mitigating risks associated with model poisoning and adversarial interference. Our approach, novel in its application of CFA principles to FL, ensures contributions from participating nodes are authentic and untampered, thereby enhancing system resilience without compromising computational efficiency or model performance. Empirical evaluations on benchmark datasets, MNIST and CIFAR-10, demonstrate our framework's effectiveness, achieving a 100\% success rate in integrity verification and authentication and notable resilience against adversarial attacks. These results validate the proposed security enhancements and open avenues for more secure, reliable, and privacy-conscious distributed machine learning solutions. Our work bridges a critical gap between cybersecurity and distributed machine learning, offering a foundation for future advancements in secure FL.
Related papers
- SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence.
This paper conceptualizes cybersafety and cybersecurity in the context of multimodal learning.
We present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats.
arXiv Detail & Related papers (2024-11-17T23:06:20Z) - Federated Learning in Adversarial Environments: Testbed Design and Poisoning Resilience in Cybersecurity [3.2872099228776315]
This paper focuses on the design and implementation of a Federated Learning (FL) testbed, focusing on its application in cybersecurity.
Our testbed, built using the Flower framework, facilitates experimentation with various FL frameworks, assessing their performance, scalability, and ease of integration.
Comprehensive poisoning tests, targeting both model and data integrity, evaluate the system's robustness under adversarial conditions.
arXiv Detail & Related papers (2024-09-15T17:04:25Z) - Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness [47.9744734181236]
We explore the concept of Lipschitz continuity to certify the robustness of deep neural networks (DNNs) against adversarial attacks.
We propose a novel algorithm that remaps the input domain into a constrained range, reducing the Lipschitz constant and potentially enhancing robustness.
Our method achieves the best robust accuracy for CIFAR10, CIFAR100, and ImageNet datasets on the RobustBench leaderboard.
arXiv Detail & Related papers (2024-06-28T03:10:36Z) - Robust Zero Trust Architecture: Joint Blockchain based Federated learning and Anomaly Detection based Framework [17.919501880326383]
This paper introduces a robust zero-trust architecture (ZTA) tailored for the decentralized system that empowers efficient remote work and collaboration within IoT networks.
Using blockchain-based federated learning principles, our proposed framework includes a robust aggregation mechanism designed to counteract malicious updates from compromised clients.
The framework integrates anomaly detection and trust computation, ensuring secure and reliable device collaboration in a decentralized fashion.
arXiv Detail & Related papers (2024-06-24T23:15:19Z) - Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach [20.74679353443655]
We introduce a framework that melds blockchain with federated learning, thereby ensuring an immutable record of unlearning requests and actions.
Our key contributions encompass a certification mechanism for the unlearning process, the enhancement of data security and privacy, and the optimization of data management.
arXiv Detail & Related papers (2024-05-27T04:35:49Z) - A Zero Trust Framework for Realization and Defense Against Generative AI
Attacks in Power Grid [62.91192307098067]
This paper proposes a novel zero trust framework for a power grid supply chain (PGSC)
It facilitates early detection of potential GenAI-driven attack vectors, assessment of tail risk-based stability measures, and mitigation of such threats.
Experimental results show that the proposed zero trust framework achieves an accuracy of 95.7% on attack vector generation, a risk measure of 9.61% for a 95% stable PGSC, and a 99% confidence in defense against GenAI-driven attack.
arXiv Detail & Related papers (2024-03-11T02:47:21Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - PPBFL: A Privacy Protected Blockchain-based Federated Learning Model [6.278098707317501]
We propose a Protected-based Federated Learning Model (PPBFL) to enhance the security of federated learning.
We introduce a Proof of Training Work (PoTW) algorithm tailored for federated learning, aiming to incentive training nodes.
We also propose a new mix transactions mechanism utilizing ring signature technology to better protect the identity privacy of local training clients.
arXiv Detail & Related papers (2024-01-02T13:13:28Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.