Asymptotic utility of spectral anonymization
- URL: http://arxiv.org/abs/2405.20779v2
- Date: Mon, 12 Aug 2024 06:42:34 GMT
- Title: Asymptotic utility of spectral anonymization
- Authors: Katariina Perkonoja, Joni Virta,
- Abstract summary: We study the utility and privacy of the spectral anonymization (SA) algorithm.
We introduce two novel SA variants: $mathcalJ$-spectral anonymization and matrix $mathcalO$-spectral anonymization.
We show how well, under some practical assumptions, these SA algorithms preserve the first and second moments of the original data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the contemporary data landscape characterized by multi-source data collection and third-party sharing, ensuring individual privacy stands as a critical concern. While various anonymization methods exist, their utility preservation and privacy guarantees remain challenging to quantify. In this work, we address this gap by studying the utility and privacy of the spectral anonymization (SA) algorithm, particularly in an asymptotic framework. Unlike conventional anonymization methods that directly modify the original data, SA operates by perturbing the data in a spectral basis and subsequently reverting them to their original basis. Alongside the original version $\mathcal{P}$-SA, employing random permutation transformation, we introduce two novel SA variants: $\mathcal{J}$-spectral anonymization and $\mathcal{O}$-spectral anonymization, which employ sign-change and orthogonal matrix transformations, respectively. We show how well, under some practical assumptions, these SA algorithms preserve the first and second moments of the original data. Our results reveal, in particular, that the asymptotic efficiency of all three SA algorithms in covariance estimation is exactly 50% when compared to the original data. To assess the applicability of these asymptotic results in practice, we conduct a simulation study with finite data and also evaluate the privacy protection offered by these algorithms using distance-based record linkage. Our research reveals that while no method exhibits clear superiority in finite-sample utility, $\mathcal{O}$-SA distinguishes itself for its exceptional privacy preservation, never producing identical records, albeit with increased computational complexity. Conversely, $\mathcal{P}$-SA emerges as a computationally efficient alternative, demonstrating unmatched efficiency in mean estimation.
Related papers
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
We propose TernaryVote, which combines a ternary compressor and the majority vote mechanism to realize differential privacy, gradient compression, and Byzantine resilience simultaneously.
We theoretically quantify the privacy guarantee through the lens of the emerging f-differential privacy (DP) and the Byzantine resilience of the proposed algorithm.
arXiv Detail & Related papers (2024-02-16T16:41:14Z) - Practical Privacy-Preserving Gaussian Process Regression via Secret
Sharing [23.80837224347696]
This paper proposes a privacy-preserving GPR method based on secret sharing (SS)
We derive a new SS-based exponentiation operation through the idea of 'confusion-correction' and construct an SS-based matrix inversion algorithm based on Cholesky decomposition.
Empirical results show that our proposed method can achieve reasonable accuracy and efficiency under the premise of preserving data privacy.
arXiv Detail & Related papers (2023-06-26T08:17:51Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Nonparametric extensions of randomized response for private confidence sets [51.75485869914048]
This work derives methods for performing nonparametric, nonasymptotic statistical inference for population means under the constraint of local differential privacy (LDP)
We present confidence intervals (CI) and time-uniform confidence sequences (CS) for $mustar$ when only given access to the privatized data.
arXiv Detail & Related papers (2022-02-17T16:04:49Z) - Differentially Private Temporal Difference Learning with Stochastic
Nonconvex-Strongly-Concave Optimization [17.361143427007224]
temporal difference (TD) learning is a widely used method to evaluate policies in reinforcement learning.
In this paper, we consider preserving privacy in TD learning with a nonlinear value function.
We show that DPTD could provide $epsilon,n-differential privacy (DP) guarantee for sensitive information encoded in transitions and retain the original power of TD learning.
arXiv Detail & Related papers (2022-01-25T16:48:29Z) - Private Alternating Least Squares: Practical Private Matrix Completion
with Tighter Rates [34.023599653814415]
We study the problem of differentially private (DP) matrix completion under user-level privacy.
We design a joint differentially private variant of the popular Alternating-Least-Squares (ALS) method.
arXiv Detail & Related papers (2021-07-20T23:19:11Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - New Oracle-Efficient Algorithms for Private Synthetic Data Release [52.33506193761153]
We present three new algorithms for constructing differentially private synthetic data.
The algorithms satisfy differential privacy even in the worst case.
Compared to the state-of-the-art method High-Dimensional Matrix Mechanism citeMcKennaMHM18, our algorithms provide better accuracy in the large workload.
arXiv Detail & Related papers (2020-07-10T15:46:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.